Hierarchically Structured Carbonaceous Foams Generation and Their Use as Electrochemical Capacitors and Negative Electrodes for Lithium-ion Batteries Devices

2010 ◽  
Vol 1266 ◽  
Author(s):  
Nicolas Brun ◽  
Savari R. S. Prabaharan ◽  
Mathieu Morcrette ◽  
Marc Birot ◽  
Gilles Pécastaings ◽  
...  

AbstractUsing a hard exotemplate procedure, hierarchically structured carbonaceous foams have been designed, using silica monolith as inorganic template and phenolic resin as carbon precursor. The open cell carbonaceous monoliths exhibit specific surface areas from 500 to 800 m2.g-1, essentially based on microporosity and macropores ranging from 0.05 up to 50 μm. Application as electrochemical energy storage devices have been checked and discuss inhere.

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4000
Author(s):  
Eunhwan Kim ◽  
Juyeon Han ◽  
Seokgyu Ryu ◽  
Youngkyu Choi ◽  
Jeeyoung Yoo

For decades, improvements in electrolytes and electrodes have driven the development of electrochemical energy storage devices. Generally, electrodes and electrolytes should not be developed separately due to the importance of the interaction at their interface. The energy storage ability and safety of energy storage devices are in fact determined by the arrangement of ions and electrons between the electrode and the electrolyte. In this paper, the physicochemical and electrochemical properties of lithium-ion batteries and supercapacitors using ionic liquids (ILs) as an electrolyte are reviewed. Additionally, the energy storage device ILs developed over the last decade are introduced.


Physchem ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 26-44
Author(s):  
Chiara Ferrara ◽  
Riccardo Ruffo ◽  
Piercarlo Mustarelli

Extended interphases are playing an increasingly important role in electrochemical energy storage devices and, in particular, in lithium-ion and lithium metal batteries. With this in mind we initially address the differences between the concepts of interface and interphase. After that, we discuss in detail the mechanisms of solid electrolyte interphase (SEI) formation in Li-ion batteries. Then, we analyze the methods for interphase characterization, with emphasis put on in-situ and operando approaches. Finally, we look at the near future by addressing the issues underlying the lithium metal/electrolyte interface, and the emerging role played by the cathode electrolyte interphase when high voltage materials are employed.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 487
Author(s):  
Tae-Kue Kim ◽  
Sung-Chun Moon

The growth of the lithium-ion battery market is accelerating. Although they are widely used in various fields, ranging from mobile devices to large-capacity energy storage devices, stability has always been a problem, which is a critical disadvantage of lithium-ion batteries. If the battery is unstable, which usually occurs at the end of its life, problems such as overheating and overcurrent during charge-discharge increase. In this paper, we propose a method to accurately predict battery life in order to secure battery stability. Unlike the existing methods, we propose a method of assessing the life of a battery by estimating the irreversible energy from the basic law of entropy using voltage, current, and time in a realistic dimension. The life estimation accuracy using the proposed method was at least 91.6%, and the accuracy was higher than 94% when considering the actual used range. The experimental results proved that the proposed method is a practical and effective method for estimating the life of lithium-ion batteries.


RSC Advances ◽  
2019 ◽  
Vol 9 (60) ◽  
pp. 35045-35049
Author(s):  
Xu Chen ◽  
Jian Zhou ◽  
Jiarui Li ◽  
Haiyan Luo ◽  
Lin Mei ◽  
...  

High-performance lithium ion batteries are ideal energy storage devices for both grid-scale and large-scale applications.


Nanoscale ◽  
2022 ◽  
Author(s):  
Zhiyu Zhou ◽  
Zexiang Chen ◽  
Yang Zhao ◽  
Huifang Lv ◽  
Hualiang Wei ◽  
...  

In recent years and following the progress made in lithium-ion battery technology, substantial efforts have been devoted to developing practical lithium-sulfur (Li–S) batteries for next-generation commercial energy storage devices. The...


2021 ◽  
Vol 1 (3) ◽  
pp. 49-56
Author(s):  
S.M. Zuyev ◽  
◽  
R.A. Maleyev ◽  
YU.M. Shmatkov ◽  
M.YU. Khandzhalov ◽  
...  

This article provides a comparative analysis of various energy storage devices. A detailed review and analysis of molecular energy storage units is carried out, their main characteristics and parame-ters, as well as their application areas, are determined. The main types of molecular energy storage are determined: electric double layer capacitors, pseudo capacitors, hybrid capacitors. Comparison of the characteristics of various batteries is given. The parameters of various energy storage devices are presented. The analysis of molecular energy storage devices and accumulators is carried out. Ttheir advantages and disadvantages are revealed. It has been shown that molecular energy storage or double layer electrochemical capacitors are ideal energy storage systems due to their high specific energy, fast charging and long life compared to conventional capacitors. The article presents oscillograms of a lithium-ion battery with a voltage of 10.8 V at a pulsed load current of 2A of a laptop with and without a molecular energy storage device, as well as oscil-lograms of a laptop with DVD lithium-ion battery with a voltage of 10.8 V with a parallel shutdown of a molecular energy storage device with a capacity of 7 F and without it. The comparative analysis shows that when the molecular energy storage unit with a 7 F capacity is switched on and off, transient processes are significantly improved and there are no supply voltage dips. The dependenc-es of the operating time of a 3.6 V 600 mAh lithium-ion battery at a load of 2 A for powering mo-bile cellular devices with and without a molecular energy storage are given. It is shown that when the molecular energy storage device is switched on, the battery operation time increases by almost 20%.


Nanoscale ◽  
2021 ◽  
Author(s):  
Zhichang Xiao ◽  
Junwei Han ◽  
Haiyong He ◽  
Xinghao Zhang ◽  
Jing Xiao ◽  
...  

Lithium-ion capacitors (LICs) have attracted much attention considering their efficient combination of high energy density and high-power density. However, to meet the increasing requirements of energy storage devices and the...


Author(s):  
Juan Yu ◽  
Xuyang Wang ◽  
Jiaxin Peng ◽  
Xuefeng Jia ◽  
Linbo Li ◽  
...  

Abstract Biomass-activated carbon materials are promising electrode materials for lithium-ion hybrid capacitors (LiCs) because of their natural hierarchical pore structure. The efficient utilization of structural pores in activated carbon is very important for their electrochemical performance. Herein, porous biomass-activated carbon (PAC) with large specific surface area was prepared using a one-step activation method with biomass waste as the carbon source and ZnCl2 as the activator. To further improve its pore structure utilization efficiency, the PAC was doped with nitrogen using urea as the nitrogen source. The experimental results confirmed that PAC-1 with a high nitrogen doping level of 4.66% exhibited the most efficient pore utilization among all the samples investigated in this study. PAC-1 exhibited 92% capacity retention after 8000 cycles, showing good cycling stability. Then, to maximize the utilization of high-efficiency energy storage devices, LiNi0.8Co0.15Al0.05O2 (NCA), a promising cathode material for lithium-ion batteries with high specific capacity, was compounded with PAC-1 in different ratios to obtain NCA@PC composites. The NCA@PC-9 composite exhibited excellent capacitance in LiCs and an energy density of 210.9 Wh kg-1 at a high power density of 13.3 kW kg-1. These results provide guidelines for the design of high-performance and low-cost energy storage devices.


Batteries ◽  
2019 ◽  
Vol 5 (4) ◽  
pp. 68 ◽  
Author(s):  
Velázquez-Martínez ◽  
Valio ◽  
Santasalo-Aarnio ◽  
Reuter ◽  
Serna-Guerrero

Lithium-ion batteries (LIBs) are currently one of the most important electrochemical energy storage devices, powering electronic mobile devices and electric vehicles alike. However, there is a remarkable difference between their rate of production and rate of recycling. At the end of their lifecycle, only a limited number of LIBs undergo any recycling treatment, with the majority go to landfills or being hoarded in households. Further losses of LIB components occur because the the state-of-the-art LIB recycling processes are limited to components with high economic value, e.g., Co, Cu, Fe, and Al. With the increasing popularity of concepts such as “circular economy” (CE), new LIB recycling systems have been proposed that target a wider spectrum of compounds, thus reducing the environmental impact associated with LIB production. This review work presents a discussion of the current practices and some of the most promising emerging technologies for recycling LIBs. While other authoritative reviews have focused on the description of recycling processes, the aim of the present was is to offer an analysis of recycling technologies from a CE perspective. Consequently, the discussion is based on the ability of each technology to recover every component in LIBs. The gathered data depicted a direct relationship between process complexity and the variety and usability of the recovered fractions. Indeed, only processes employing a combination of mechanical processing, and hydro- and pyrometallurgical steps seemed able to obtain materials suitable for LIB (re)manufacture. On the other hand, processes relying on pyrometallurgical steps are robust, but only capable of recovering metallic components.


Sign in / Sign up

Export Citation Format

Share Document