Defect Control During Epitaxial Regrowth by Rapid Thermal Annealing

1982 ◽  
Vol 13 ◽  
Author(s):  
H. Baumgart ◽  
G. K. Celler ◽  
D. J. Lischner ◽  
McD. Robinson ◽  
T. T. Sheng

ABSTRACTRapid Thermal Annealing (RTA) with tungsten halogen lamps provides excellent regrowth of silicon layers damaged by ion implantation. In addition to minimizing dopant redistribution, the inherent advantage of this technique is good control of temperature gradients. The latter is instrumental in reducing the density of extended defects in the annealed samples. In contrast, solid phase laser annealing, which involves steep temperature gradients, always leaves interstitial dislocation loops and point defect clusters. We present a comparative study of crystal quality following laser processing and incoherent light annealing as well as furnace annealing of As, P and B ion implanted Si wafers.

1984 ◽  
Vol 36 ◽  
Author(s):  
S. J. Pennycook ◽  
J. Narayan ◽  
R. J. Culbertson

ABSTRACTWe have studied in detail the transient enhanced diffusion observed during furnace or rapid-thermal-annealing of ion-implanted Si. We show that the effect originates in the trapping of Si atoms by dopant atoms during implantation, which are retained during solid-phase-epitaxial (SPE) growth but released by subsequent annealing to cause a transient dopant precipitation or profile broadening. The interstitials condense to form a band of dislocation loops located at the peak of the dopant profile, which may be distinct from the band formed at the original amorphous/crystalline interface. The band can develop into a network and effectively getter the dopant. We discuss the conditions under which the various effects may or may not be observed, and discuss preliminary observations on As+ implanted Si.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2248 ◽  
Author(s):  
Hadi Mahmodi ◽  
Md Hashim ◽  
Tetsuo Soga ◽  
Salman Alrokayan ◽  
Haseeb Khan ◽  
...  

In this work, nanocrystalline Ge1−xSnx alloy formation from a rapid thermal annealed Ge/Sn/Ge multilayer has been presented. The multilayer was magnetron sputtered onto the Silicon substrate. This was followed by annealing the layers by rapid thermal annealing, at temperatures of 300 °C, 350 °C, 400 °C, and 450 °C, for 10 s. Then, the effect of thermal annealing on the morphological, structural, and optical characteristics of the synthesized Ge1−xSnx alloys were investigated. The nanocrystalline Ge1−xSnx formation was revealed by high-resolution X-ray diffraction (HR-XRD) measurements, which showed the orientation of (111). Raman results showed that phonon intensities of the Ge-Ge vibrations were improved with an increase in the annealing temperature. The results evidently showed that raising the annealing temperature led to improvements in the crystalline quality of the layers. It was demonstrated that Ge-Sn solid-phase mixing had occurred at a low temperature of 400 °C, which led to the creation of a Ge1−xSnx alloy. In addition, spectral photo-responsivity of a fabricated Ge1−xSnx metal-semiconductor-metal (MSM) photodetector exhibited its extending wavelength into the near-infrared region (820 nm).


2011 ◽  
Vol 1321 ◽  
Author(s):  
A. Kumar ◽  
P.I. Widenborg ◽  
H. Hidayat ◽  
Qiu Zixuan ◽  
A.G. Aberle

ABSTRACTThe effect of the rapid thermal annealing (RTA) and hydrogenation step on the electronic properties of the n+ and p+ solid phase crystallized (SPC) poly-crystalline silicon (poly-Si) thin films was investigated using Hall effect measurements and four-point-probe measurements. Both the RTA and hydrogenation step were found to affect the electronic properties of doped poly-Si thin films. The RTA step was found to have the largest impact on the dopant activation and majority carrier mobility of the p+ SPC poly-Si thin films. A very high Hall mobility of 71 cm2/Vs for n+ poly-Si and 35 cm2/Vs for p+ poly-Si at the carrier concentration of 2×1019 cm-3 and 4.5×1019 cm-3, respectively, were obtained.


2007 ◽  
Vol 124-126 ◽  
pp. 447-450 ◽  
Author(s):  
Hyoung June Kim

Polycrystalline Si thin film transistors (TFTs) have been fabricated through solid phase crystallization using field-enhanced rapid thermal annealing (FE-RTA) system. The system consists of inline furnace modules for preheating and cooling of the glass substrates and a process module for rapid radiative heating combined with alternating magnetic field induction. The FE-RTA system enables crystallization of amorphous Si at high throughputs without any glass damages. While the typical grain structures of poly-Si by FE-RTA are similar to those of solid phase crystallization, the residual amorphous Si and intragranular defects are reduced.


1987 ◽  
Vol 103 ◽  
Author(s):  
Menachem Nathan

ABSTRACTA general scheme for determining which metal-Si systems undergo solidphase amorphization (SPA) upon rapid thermal annealing is presented and used to investigate Ni-Si, Ti-Si, V-Si, Co-Si and Cr-Si reactions. SPA occurs only in the first three systems. With the glaring exception of Co-Si, the results agree with the thermodynamic predictions of SPA in systems in which the free energy of a glassy phase is significantly lower than the free energy of the separate components. The amorphization may also be influenced by the diffusing species and contamination. Following SPA, the first crystalline compound is determined by nucleation kinetics.


1996 ◽  
Vol 424 ◽  
Author(s):  
Reece Kingi ◽  
Yaozu Wang ◽  
Stephen J. Fonash ◽  
Osama Awadelkarim ◽  
John Mehlhaff

AbstractRapid thermal annealing and furnace annealing for the solid phase crystallization of amorphous silicon thin films deposited using PECVD from argon diluted silane have been compared. Results reveal that the crystallization time, the growth time, and the transient time are temperature activated, and that the resulting polycrystalline silicon grain size is inversely proportional to the annealing temperature, for both furnace annealing and rapid thermal annealing. In addition, rapid thermal annealing was found to result in a lower transient time, a lower growth time, a lower crystallization time, and smaller grain sizes than furnace annealing, for a given annealing temperature. Interestingly, the transient time, growth time, and crystallization time activation energies are much lower for rapid thermal annealing, compared to furnace annealing.We propose two models to explain the observed differences between rapid thermal annealing and furnace annealing.


1998 ◽  
Vol 135 (1-4) ◽  
pp. 205-208 ◽  
Author(s):  
Yongqian Wang ◽  
Xianbo Liao ◽  
Zhixun Ma ◽  
Guozhen Yue ◽  
Hongwei Diao ◽  
...  

1996 ◽  
Vol 424 ◽  
Author(s):  
Reece Kingi ◽  
Yaozu Wang ◽  
Stephen Fonash ◽  
Osama Awadelkarim ◽  
Yuan-Mn Li

AbstractThree approaches to modifying the solid phase crystallization kinetics of amorphous silicon thin films are examined with the goal of reducing the thermal budget and improving the poly-Si quality for thin film transistor applications. The three approaches consist of (1) variations in the PECVD a-Si deposition parameters; (2) the application of pre-fumace-anneal surface treatments; and (3) using both rapid thermal annealing and furnace annealing at different temperatures. We also examine the synergism among these approaches.Results reveal that (1) film deposition dilution and dilution/temperature changes do not strongly affect crystallization time, but do affect grain size; (2) pre-anneal surface treatments can dramatically reduce the solid phase crystallization thermal budget for diluted films and act synergistically with deposition dilution or dilution/temperature effects; and (3) rapid thermal annealing leads to different crystallization kinetics from that seen for furnace annealing.


Sign in / Sign up

Export Citation Format

Share Document