The Synthesis and Characterization of Polybenzamides Containing Siloxanes.

1988 ◽  
Vol 134 ◽  
Author(s):  
Robert J. Kumpf ◽  
Bernard Gordon

ABSTRACTThree different kinds of siloxane-containing polybenzamide copolymers have been prepared: a series of siloxane-containing segmented copolymers; a siloxane-poly(benzamide) random copolymer; and a poly(benzamide) - poly(dimethylsiloxane) block copolymer. The structures of these copolymers were confirmed using diffuse reflectance FTIR spectroscopy. Dilute solution viscometery showed them to be high polymers. The thermal stabilities of these copolymers were studied using thermal gravimetric analysis. Incorporation of siloxane units via a phenyl link was found to not affect the inherent thermal stability of the poly(benzamide) chain. The solution phase behavior of these copolymers in DMAC/LiCl was studied using an optical microscope fitted with cross-polars. The segmented copolymers and the block copolymer exhibited lyotropic behavior, which was influenced by the amount of siloxane and the overall molecular architecture. Solutions of the random copolymer were isotropic at all concentrations studied.

Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1025
Author(s):  
Franklin Afinjuomo ◽  
Paris Fouladian ◽  
Thomas G. Barclay ◽  
Yunmei Song ◽  
Nikolai Petrovsky ◽  
...  

This paper reports the oxidation of inulin using varying ratios of sodium periodate and the characterization of the inulin polyaldehyde. The physicochemical properties of the inulin polyaldehyde (oxidized inulin) were characterized using different techniques including 1D NMR spectroscopy, 13C Nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), differential scanning calorimetric (DSC), ultraviolet-visible spectroscopy (UV), and scanning electron microscopy (SEM). The aldehyde peak was not very visible in the FTIR, because the aldehyde functional group exists in a masked form (hemiacetal). The thermal stability of the oxidized inulin decreased with the increasing oxidation degree. The smooth spherical shape of raw inulin was destructed due to the oxidation, as confirmed by the SEM result. The 1HNMR results show some new peaks from 4.8 to 5.0 as well as around 5.63 ppm. However, no aldehyde peak was found around 9.7 ppm. This can be attributed to the hemiacetal. The reaction of oxidized inulin with tert-butyl carbazate produced a carbazone conjugate. There was clear evidence of decreased peak intensity for the proton belonging to the hemiacetal group. This clearly shows that not all of the hemiacetal group can be reverted by carbazate. In conclusion, this work provides vital information as regards changes in the physicochemical properties of the oxidized inulin, which has direct implications when considering the further utilization of this biomaterial.


2008 ◽  
Vol 62 (4) ◽  
Author(s):  
Hamada Abdel-Razik

AbstractSynthesis, characterization and application of diaminomaleonitrile (DAMN)-functionalized polystyrene grafts were studied. Dibenzoyle peroxide (BP) was used as an initiator. Optimum conditions for grafting were found to be c(DAMN) = 0.5 M, c(BP) = 0.016 M, θ = 85 °C and t = 4 h. Water uptake of the polystyrene graft membranes was found to increase with the increase of the grafting yield. The chemical structure, thermal characteristics and thermal stability of the obtained membranes were investigated by means of FTIR spectroscopy, differential scanning calorimetry, and thermal gravimetric analysis. Polystyrene graft membrane with the degree of grafting of up to 96 % was found to be useful for the pervaporation separation of phenol/water mixtures.


1989 ◽  
Vol 171 ◽  
Author(s):  
Gregory T. Pawlikowski ◽  
R. A. Weiss ◽  
S. J. Huang

ABSTRACTA block copolymer consisting of liquid crystalline polyester segments and methylated polyamide segments has been synthesized. Solution polycondensation of acid chloride end-capped poly(terephthaloyl phenylhydroquinone) (LCP portion) with an amine terminated poly(N,N'-dimethylethylene sebacamide) was utilized to prepare the block copolymer. Characterization by differential scanning calorimetry, infrared spectroscopy, thermogravimetric analysis, optical microscopy and elemental analysis has been performed to verify the existence of the block copolymer that may have potential as a molecular composite material or self-reinforcing thermoplastic.


Author(s):  
Abdel-Hamid I. Mourad ◽  
Omar G. Ayad ◽  
Ashfakur Rahman ◽  
Ali Hilal-Alnaqbi ◽  
Basim I. Abu-Jdayil

This work is concerned with the synthesis and characterization of Multi-Walled Carbon Nanotube (MWCNT) reinforced Kevlar KM2Plus composites with various MWCNT contents (0.2, 0.3, 0.4, 0.5, 0.6, and 0.8 wt. %), by the wet lay-up technique. These samples were experimentally investigated for their thermo-mechanical properties using Thermo-Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), tensile testing and three-point bending techniques. The mechanical properties showed remarkable improvement with increasing MWCNT wt.% up to certain content. The results revealed that the addition of MWCNT fillers has no significant effect on the thermal stability of the composites.


2009 ◽  
Vol 64 (11-12) ◽  
pp. 1535-1541 ◽  
Author(s):  
Vera Hartdegen ◽  
Thomas M. Klapötke ◽  
Stefan M. Sproll

Tris(2-(1H-tetrazol-1-yl)ethyl)amine (1) was synthesized as gas-generating agent and characterized by vibrational (IR) and NMR spectroscopy. The energetic properties were determined by bomb calorimetric measurements along with calculations using the EXPLO5 software. Tris(2-(1H-tetrazol- 1-yl)ethyl)amine (1) was used for further reactions with copper(II) nitrate to form a three-dimensional coordination polymer 3. Both compounds were characterized by single crystal X-ray diffraction. The thermal stability was determined by DSC measurements and the physical stability by BAMstandards. Tris(2-(1H-tetrazol-1-yl)ethyl)amine (1) proved to be suitable as gas-generating agent with sufficient physical and thermal stabilities. The low thermal stability of the copper complex 3 disqualifies it as potential colorant agent for pyrotechnical applications


2017 ◽  
Vol 748 ◽  
pp. 35-38
Author(s):  
Ming Ming Yu ◽  
Lin Fang ◽  
Min Yang ◽  
Hong Li ◽  
Mu Su Ren ◽  
...  

The thermal stabilities of two amine based multifunctional epoxy resins (TGDDE/MNA & TGBAPP/MNA) and two dimer carboxylic acid (DFA) toughened resins (DFA-TGDDE/MNA & DFA-TGBAPP/MNA) were comparatively investigated with the thermo-gravimetric analysis (TG). The TG parameters of the resins indicated that the thermal stability of the resins was increased after the modification. Furthermore, the thermal degradation kinetics was studied with a dynamic method according to Ozawa model, which explained this phenomenon.


2012 ◽  
Vol 9 (2) ◽  
pp. 510-516 ◽  
Author(s):  
Esam A. Elhefian ◽  
Mohamed Mahmoud Nasef ◽  
Abdul Hamid Yahaya

Chitosan/agar (CS/AG) films were prepared by blending different proportions of chitosan and agar (considering chitosan as the major component) in solution forms. The thermal stability of the blended films was studied using thermal gravimetric analysis (TGA). It was revealed that chitosan and agar form a compatible blend. Studying the mechanical properties of the films showed a decrease in the tensile strength and elongation at break with increasing agar content. Blending of agar with chitosan at all proportions was found to form hydrogel films with enhanced swelling compared to the pure chitosan one. Static water contact angle measurements confirmed the increasing affinity of the blended films towards water suggesting that blending of agar with chitosan improves the wettability of the obtained films.


2018 ◽  
Vol 43 (26) ◽  
pp. 11862-11871 ◽  
Author(s):  
Taewook Ryu ◽  
Faiz Ahmed ◽  
Sabuj Chandra Sutradhar ◽  
Nasrin Siraj Lopa ◽  
Hanmo Yang ◽  
...  

2008 ◽  
Vol 140 ◽  
pp. 97-102 ◽  
Author(s):  
M. Sarah Mohlala ◽  
Suprakas Sinha Ray

This paper describes the preparation, characterization and properties of nanostructured composite materials based on poly(butylene adipate-co-polycaprolactam) (PBA-co-PCL)/multiwalled carbon nanotubes (MWCNTs) and polycaprolactone (PCL)/MWCNTs. The polymer/MWCNTs nanocomposites were prepared by mixing the polymers with various amounts of MWCNTs using both solution and melt blending processes. The dispersion of MWCNTs into the polymer matrix was analyzed by transmission electron microscopy (TEM) and the thermal stability of the nanocomposites was studied by thermal gravimetric analysis (TGA). Differential scanning calorimetry (DSC) was used to study the crystallization and melting behaviour of the polymer matrices containing the MWCNTs.


2010 ◽  
Vol 7 (4) ◽  
pp. 1212-1219 ◽  
Author(s):  
Esam A. El-Hefian ◽  
Mohamed Mahmoud Nasef ◽  
Abdul Hamid Yahaya

In this study, chitosan and PVA were blended at different proportions (considering chitosan as the main component) in solution forms. The chemical structure and the morphology of the obtained blend films were investigated using FTIR and field emission scanning electron microscope (FESEM). The thermal stability of the blend films were also studied using thermal gravimetric analysis (TGA). Our results showed that chitosan and PVA form a compatible blend and their films displayed homogenous and smooth surface properties compared to their individual pure components. The blending of PVA with chitosan at all proportions was found to highly enhance the swelling of the obtained films compared to that of pure chitosan one.


Sign in / Sign up

Export Citation Format

Share Document