Deep-Level Transient Spectroscopy Studies of Rapid Thermal Processed GaAs with Sio2 Encapsulant

1989 ◽  
Vol 146 ◽  
Author(s):  
Masayuki Katayama ◽  
Yutaka Tokuda ◽  
Nobuo Ando ◽  
Akio Kitagawa ◽  
Akira Usami ◽  
...  

ABSTRACTEffects of rapid thermal processing (RTP) on SiO2/GaAs interfaces have been studied with X-ray photoelectron spectroscopy, capacitance-voltage measurements and deep-level transient spectroscopy. SiO2 films of 50, 200 and 1250 nim thickness have been deposited on GaAs. RTP has been performed at 760 and 910°C for 9 s. The rapid diffusion of Ga through the SiO2 film occurs, and the As loss and the formation of the As layer near the interface are observed. The decrease of the carrier concentration occurs in all RTP samples. Five electron traps EAI (Ec – 0.27 eV), EA2 (Ec – 0.32 eV), EA3 (Ec – 0.47 eV), EA4 (Ec – 0.58 eV) and EL2 (Ec – 0.78 eV) are produced by RTP. It is considered that the production of the trap EL2 is closely related to the Ga outdiffusion into the SiO2 film and the As indiffusion from the pile-up of elemental As near the interface. Effects of SiO2 film thickness on RTP-SiO2/GaAs are also reported.

1988 ◽  
Vol 126 ◽  
Author(s):  
Yutaka Tokuda ◽  
Masayuki Katayama ◽  
Nobuo Ando ◽  
Akio Kitagawa ◽  
Akira Usami ◽  
...  

ABSTRACTEffects of rapid thermal processing (RTP) on SiO2/GaAs interfaces have been investigated with Auger electron spectroscopy and X-ray photoelectron spectroscopy. SiO2 films of 100, 175, 200 and 1250 nm thickness have been deposited on liquid encapsulated Czochralski-grown (100) n-type GaAs wafers by the RF sputtering method. RTP has been performed at 800°C for 6 s. For comparison, conventional furnace processing (CFP) has also been performed at 800°C for 20 min for 200-nm-thick SiO2/GaAs. The Ga is observed on the outer SiO2 surface for RTP samples as well as CFP samples. This indicates that the outdiffusion of Ga occurs after only 6 s at 800°C even through 1250-nm-thick SiO2 films. The depth profile of Ga reveals the pile-up of Ga on the outer SiO2 surface for both RTP and CFP samples. The amount of Ga on the outer surface gradually increases in the thickness range 1250 to 175 nm. The As is also observed on the outer surface. The amount of Ga and As on the outer surface rapidly increases at 100 nm thickness. Electron traps in RTP samples have been studied with deep-level transient spectroscopy. Different electron traps are produced in GaAs by RTP between 100-nm- and 200-nm-thick SiO2/GaAs. It is thought that the production of different traps by RTP is related to the amount of Ga and As loss through SiO2 films from GaAs.


Author(s):  
М.М. Соболев ◽  
Ф.Ю. Солдатенков

The results of experimental studies of capacitance– voltage characteristics, spectra of deep-level transient spectroscopy of graded high-voltage GaAs p+−p0−i−n0 diodes fabricated by liquid-phase epitaxy at a crystallization temperature of 900C from one solution–melt due to autodoping with background impurities, in a hydrogen or argon ambient, before and after irradiation with neutrons. After neutron irradiation, deep-level transient spectroscopy spectra revealed wide zones of defect clusters with acceptor-like negatively charged traps in the n0-layer, which arise as a result of electron emission from states located above the middle of the band gap. It was found that the differences in capacitance–voltage characteristics of the structures grown in hydrogen or argon ambient after irradiation are due to different doses of irradiation of GaAs p+−p0−i−n0 structures and different degrees of compensation of shallow donor impurities by deep traps in the layers.


2011 ◽  
Vol 109 (6) ◽  
pp. 064514 ◽  
Author(s):  
A. F. Basile ◽  
J. Rozen ◽  
J. R. Williams ◽  
L. C. Feldman ◽  
P. M. Mooney

1989 ◽  
Vol 4 (2) ◽  
pp. 241-243 ◽  
Author(s):  
Yutaka Tokuda ◽  
Nobuji Kobayashi ◽  
Yajiro Inoue ◽  
Akira Usami ◽  
Makoto Imura

The annihilation of thermal donors in silicon by rapid thermal annealing (RTA) has been studied with deep-level transient spectroscopy. The electron trap AO (Ec – 0.13 eV) observed after heat treatment at 450 °C for 10 h, which is identified with the thermal donor, disappears by RTA at 800 °C for 10 s. However, four electron traps, A1 (Ec 0.18 eV), A2 (Ec – 0.25 eV), A3 (Ec – 0.36 eV), and A4 (Ec – 0.52 eV), with the concentration of ∼1012 cm−3 are produced after annihilation of thermal donors by RTA. These traps are also observed in silicon which receives only RTA at 800 °C. This indicates that traps A1–A4 are thermal stress induced or quenched-in defects by RTA, not secondary defects resulting from annealing of thermal donors.


1988 ◽  
Vol 63 (11) ◽  
pp. 5375-5379 ◽  
Author(s):  
A. Rohatgi ◽  
S. K. Pang ◽  
T. K. Gupta ◽  
W. D. Straub

1987 ◽  
Vol 92 ◽  
Author(s):  
Akio Kitagawa ◽  
Yutaka Tokuda ◽  
Akira Usami ◽  
Takao Wada ◽  
Hiroyuki kano

ABSTRACTRapid thermal processing (RTP) using halogen lamps for a Si-doped molecular beam epitaxial (MBE) n-GaAs layers was investigated by deep level transient spectroscopy. RTP was performed at 700°C, 800°C and 900°C for 6 s. Two electron traps NI ( Ec-0.5-0.7eV) and EL2 (Ec - 0.82 eV) are produced by RTP at 800 and 900°C.The peculiar spatial variations of the Nl and EL2 concentration across the MBE GaAs films are observed. The larger concentrations of the trap N1 and EL2 are observed near the edge of the samples, and the minima of N1 and EL2 concentration lie between the center and the edge of the sample. It seems that these spatial variations of N1 and EL2 concentration are consistent with that of the thermal stress induced by RTP. Furthermore, the EL2 concentration near the edge of the sample is suppressed by the contact with the GaAs pieces on the edge around the sample during RTP.


Solar Cells ◽  
1988 ◽  
Vol 24 (3-4) ◽  
pp. 279-286 ◽  
Author(s):  
W.I. Lee ◽  
N.R. Taskar ◽  
S.K. Ghandhi ◽  
J.M. Borrego

1993 ◽  
Vol 312 ◽  
Author(s):  
P. Krispin ◽  
R. Hey ◽  
H. Kostial ◽  
M. Höricke

AbstractWe report on a detailed investigation of MBE-grown isotype silicon-doped heterostructures by capacitance/voltage (C/V) technique and deep-level transient spectroscopy (DLTS). A sequence of electrically active defects is found. By depth profiling of the density of the dominant levels it is demonstrated that the corresponding defects are concentrated at the GaAs-on-AlAs (inverted) interface. By comparison with studies on irradiation-induced levels in LPE- or VPE-grown AlGaAs we conclude that the defects at the GaAs/AlAs interface are most probably linked to different charge states of the arsenic vacancy VAs and VAs−ASi pairs.


Sign in / Sign up

Export Citation Format

Share Document