Stranski-Krastanov Growth of Ni on Si(111) at Room Temperature

1989 ◽  
Vol 159 ◽  
Author(s):  
J. R. Butler ◽  
P. A. Bennett

ABSTRACTWe introduce quantitative Auger lineshape analysis methods to study the room temperature reaction of nickel on Si(111). We show that coexisting phases may be separated by numerically fitting the composite lineshapes using a linear combination of single phase “fingerprint” spectra, obtained by scraping bulk compounds in situ. The reaction proceeds in three stages. For nickel coverage below 1 Å, the growth is layerwise, forming NiSi2. For nickel coverage from 3 to 12 Å, islands of Ni2Si are formed. For nickel coverage above 12 Å, islands of pure nickel are formed. The overlayer reactions appear to be a kinetically limited form of Stranski-Krastanov growth, with multiple compound formation.

2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Scott J. Kirkby

Chlorobenzene was reacted with NO2, in the initially acid-free zeolite NaZSM-5, to yield para-chloronitrobenzene exclusively. The precursors were loaded sequentially into self-supporting pellets of the zeolite, contained within a stainless steel cell, from the gas phase. The reaction proceeds spontaneously at room temperature. It is, however, very temperature dependent and effectively ceases at zero degrees Celsius. The reaction was monitored in situ using FT-IR. The active nitrating agent is formed from the partial electron donation by the NO2 to the Na+ cations present in the zeolite lattice. Under the reaction conditions, chlorobenzene is not readily mobile through the pore system; thus, only the molecules adsorbed near a cation site react to form para-chloronitrobenzene.


2001 ◽  
Vol 7 (S2) ◽  
pp. 386-387
Author(s):  
Pratibha L. Gai

Silica and titania based ceramics and their analogs are some of the most fundamental in crystal chemistry and ceramic science Our interests include applications of nanostructures and chemical composites of the ceramics in nanoelectronics, chemical processes and as scaffolds in biotechnologies. Finely divided titania is used in a vast array of products including paper, paint, food and clothing. Novel microscopy methods including dynamic environmental-high resolution transmission EM (EHREM) at the atomic level, FESEM and cathodoluminescence are leading to striking progress in the development of the ceramic nanotechnologies.Phase transformations in the cristobalite form of silica, from the tetragonal a phase (low or room temperature form) to the cubic β phase (high temperature, (270°C) form) result in discontinuous thermal expansion and are not conducive to nanotechnology. Here we report fundamental in situatomic resolution studies of the phase transformations using EHREM and have used the results to design a number of stable, single-phase structures at room temperature (RT).


2006 ◽  
Vol 927 ◽  
Author(s):  
Mark Bowden ◽  
Tim Kemmitt ◽  
Wendy Shaw ◽  
Nancy Hess ◽  
John Linehan ◽  
...  

ABSTRACTAmmonia borane (NH3BH3) is a molecular solid with a high volumetric and gravimetric density of hydrogen. We report room temperature structural data which shows how the freely rotating NH3 and BH3 groups allow a N-H…H-B dihydrogen bond in which hydrogen atoms on adjacent molecules are separated by only 1.90Å. The initial decomposition of ammonia borane at 80-100°C into (NH2BH2)n and H2 has been studied by in-situ nmr spectroscopy and kinetic studies using isotopic substitution. The reaction proceeds by a bimolecular pathway involving a [NH3BH2NH3]+BH4− intermediate with an activation energy of 136kJmol−1.


2010 ◽  
Vol 132 (9) ◽  
pp. 2858-2859 ◽  
Author(s):  
Peng Jiang ◽  
Soeren Porsgaard ◽  
Ferenc Borondics ◽  
Mariana Köber ◽  
Alfonso Caballero ◽  
...  

1978 ◽  
Vol 56 (1) ◽  
pp. 141-143 ◽  
Author(s):  
James H. Clark ◽  
Jack M. Miller

Various α-arylthio-β-dicarbonyls have been prepared by the room temperature reaction of β-dicarbonyltetraethylammonium fluoride monosolvates with aryl disulphides. The disulphides are formed by the in situ fluoride-assisted air oxidation of aryl thiols.


Author(s):  
S. Mahajan

The evolution of dislocation channels in irradiated metals during deformation can be envisaged to occur in three stages: (i) formation of embryonic cluster free regions, (ii) growth of these regions into microscopically observable channels and (iii) termination of their growth due to the accumulation of dislocation damage. The first two stages are particularly intriguing, and we have attempted to follow the early stages of channel formation in polycrystalline molybdenum, irradiated to 5×1019 n. cm−2 (E > 1 Mev) at the reactor ambient temperature (∼ 60°C), using transmission electron microscopy. The irradiated samples were strained, at room temperature, up to the macroscopic yield point.Figure 1 illustrates the early stages of channel formation. The observations suggest that the cluster free regions, such as A, B and C, form in isolated packets, which could subsequently link-up to evolve a channel.


Author(s):  
César D. Fermin ◽  
Dale Martin

Otoconia of higher vertebrates are interesting biological crystals that display the diffraction patterns of perfect crystals (e.g., calcite for birds and mammal) when intact, but fail to produce a regular crystallographic pattern when fixed. Image processing of the fixed crystal matrix, which resembles the organic templates of teeth and bone, failed to clarify a paradox of biomineralization described by Mann. Recently, we suggested that inner ear otoconia crystals contain growth plates that run in different directions, and that the arrangement of the plates may contribute to the turning angles seen at the hexagonal faces of the crystals.Using image processing algorithms described earlier, and Fourier Transform function (2FFT) of BioScan Optimas®, we evaluated the patterns in the packing of the otoconia fibrils of newly hatched chicks (Gallus domesticus) inner ears. Animals were fixed in situ by perfusion of 1% phosphotungstic acid (PTA) at room temperature through the left ventricle, after intraperitoneal Nembutal (35mg/Kg) deep anesthesia. Negatives were made with a Hitachi H-7100 TEM at 50K-400K magnifications. The negatives were then placed on a light box, where images were filtered and transferred to a 35 mm camera as described.


Author(s):  
C. Jennermann ◽  
S. A. Kliewer ◽  
D. C. Morris

Peroxisome proliferator-activated receptor gamma (PPARg) is a member of the nuclear hormone receptor superfamily and has been shown in vitro to regulate genes involved in lipid metabolism and adipocyte differentiation. By Northern analysis, we and other researchers have shown that expression of this receptor predominates in adipose tissue in adult mice, and appears first in whole-embryo mRNA at 13.5 days postconception. In situ hybridization was used to find out in which developing tissues PPARg is specifically expressed.Digoxigenin-labeled riboprobes were generated using the Genius™ 4 RNA Labeling Kit from Boehringer Mannheim. Full length PPAR gamma, obtained by PCR from mouse liver cDNA, was inserted into pBluescript SK and used as template for the transcription reaction. Probes of average size 200 base pairs were made by partial alkaline hydrolysis of the full length transcripts. The in situ hybridization assays were performed as described previously with some modifications. Frozen sections (10 μm thick) of day 18 mouse embryos were cut, fixed with 4% paraformaldehyde and acetylated with 0.25% acetic anhydride in 1.0M triethanolamine buffer. The sections were incubated for 2 hours at room temperature in pre-hybridization buffer, and were then hybridized with a probe concentration of 200μg per ml at 70° C, overnight in a humidified chamber. Following stringent washes in SSC buffers, the immunological detection steps were performed at room temperature. The alkaline phosphatase labeled, anti-digoxigenin antibody and detection buffers were purchased from Boehringer Mannheim. The sections were treated with a blocking buffer for one hour and incubated with antibody solution at a 1:5000 dilution for 2 hours, both at room temperature. Colored precipitate was formed by exposure to the alkaline phosphatase substrate nitrobluetetrazoliumchloride/ bromo-chloroindlylphosphate.


2020 ◽  
Author(s):  
Keishiro Yamashita ◽  
Kazuki Komatsu ◽  
Hiroyuki Kagi

An crystal-growth technique for single crystal x-ray structure analysis of high-pressure forms of hydrogen-bonded crystals is proposed. We used alcohol mixture (methanol: ethanol = 4:1 in volumetric ratio), which is a widely used pressure transmitting medium, inhibiting the nucleation and growth of unwanted crystals. In this paper, two kinds of single crystals which have not been obtained using a conventional experimental technique were obtained using this technique: ice VI at 1.99 GPa and MgCl<sub>2</sub>·7H<sub>2</sub>O at 2.50 GPa at room temperature. Here we first report the crystal structure of MgCl2·7H2O. This technique simultaneously meets the requirement of hydrostaticity for high-pressure experiments and has feasibility for further in-situ measurements.


Sign in / Sign up

Export Citation Format

Share Document