X-Ray Diffraction and TEM Studies of the Delamination of Copper Thin Films from Glass and Silica Substrates

1989 ◽  
Vol 167 ◽  
Author(s):  
Alan G. Fox ◽  
Rowland M. Cannon

AbstractThe events associated with fractures along interfaces between copper thin films and glass substrates were investigated by X-ray diffraction and transmission electron microscopy (TEM). In the as-bonded films the Bragg diffraction lines were shifted and broadened (relative to pure strain-free copper) due to residual in-plane tensile strains arising from the differences in thermal contraction between the copper and the substrates; TEM studies of these films in cross-section showed that the residual stresses had been relieved somewhat by dislocation densities as high as 1010 lines/cm2 in Cu/SiO2 films.The passage of a crack along the Cu/glass interfaces led to a significant reduction in the line shift and a slight reduction in the line broadening. Thus dislocations generated by the fracture events ‘plastically relaxed’ the residual stresses present in the as-bonded Cu by superposing a compressive component onto the pre-existing in-plane tensile strains. This dislocation generation was confirmed by TEM studies. In addition, it was found that the greater the strength of an interface, the greater was the reduction in mean strain due to the fracture; this is consistent with a larger crack-tip plastic zone and the generation of greater numbers of dislocations in the Cu films by fracture along interfaces of higher toughness (i.e. bond strength).

1990 ◽  
Vol 203 ◽  
Author(s):  
G. Sheikh ◽  
A. Berger ◽  
I. C. Noyan

ABSTRACTA simple model for the formation of residual stresses in thin films deposited on elastically strained substrates was derived and experimentally tested. In the experiments, Cu thin films were deposited on elastically stretched nickel substrates. These Cu films were2 to 4.m thick and were deposited through vapor phase evaporation or electroplating. The loads applied during the deposition were then relaxed, and the total stress in both the film and the substrate were monitored (by x-ray diffraction) during this relaxation. It was seen that the final (residual) film stresses were significantly different for bothdeposition methods. The causes of such differences are discussed.


2019 ◽  
Vol 15 (34) ◽  
pp. 1-14
Author(s):  
Bushra A. Hasan

Lead selenide PbSe thin films of different thicknesses (300, 500, and 700 nm) were deposited under vacuum using thermal evaporation method on glass substrates. X-ray diffraction measurements showed that increasing of thickness lead to well crystallize the prepared samples, such that the crystallite size increases while the dislocation density decreases with thickness increasing. A.C conductivity, dielectric constants, and loss tangent are studied as function to thickness, frequency (10kHz-10MHz) and temperatures (293K-493K). The conductivity measurements confirm confirmed that hopping is the mechanism responsible for the conduction process. Increasing of thickness decreases the thermal activation energy estimated from Arhinus equation is found to decrease with thickness increasing. The increase of thickness lead to reduce the polarizability α while the increasing of temperature lead to increase α.


Surfaces ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 106-114
Author(s):  
Yannick Hermans ◽  
Faraz Mehmood ◽  
Kerstin Lakus-Wollny ◽  
Jan P. Hofmann ◽  
Thomas Mayer ◽  
...  

Thin films of ZnWO4, a promising photocatalytic and scintillator material, were deposited for the first time using a reactive dual magnetron sputtering procedure. A ZnO target was operated using an RF signal, and a W target was operated using a DC signal. The power on the ZnO target was changed so that it would match the sputtering rate of the W target operated at 25 W. The effects of the process parameters were characterized using optical spectroscopy, X-ray diffraction, and scanning electron microscopy, including energy dispersive X-ray spectroscopy as well as X-ray photoelectron spectroscopy. It was found that stoichiometric microcrystalline ZnWO4 thin films could be obtained, by operating the ZnO target during the sputtering procedure at a power of 55 W and by post-annealing the resulting thin films for at least 10 h at 600 °C. As FTO coated glass substrates were used, annealing led as well to the incorporation of Na, resulting in n+ doped ZnWO4 thin films.


2011 ◽  
Vol 1328 ◽  
Author(s):  
KyoungMoo Lee ◽  
Yoshio Abe ◽  
Midori Kawamura ◽  
Hidenobu Itoh

ABSTRACTCobalt hydroxide thin films with a thickness of 100 nm were deposited onto glass, Si and indium tin oxide (ITO)-coated glass substrates by reactively sputtering a Co target in H2O gas. The substrate temperature was varied from -20 to +200°C. The EC performance of the films was investigated in 0.1 M KOH aqueous solution. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy of the samples indicated that Co3O4 films were formed at substrate temperatures above 100°C, and amorphous CoOOH films were deposited in the range from 10 to -20°C. A large change in transmittance of approximately 26% and high EC coloration efficiency of 47 cm2/C were obtained at a wavelength of 600 nm for the CoOOH thin film deposited at -20°C. The good EC performance of the CoOOH films is attributed to the low film density and amorphous structure.


MRS Advances ◽  
2020 ◽  
Vol 5 (23-24) ◽  
pp. 1215-1223
Author(s):  
R.R. Phiri ◽  
O.P. Oladijo ◽  
E.T. Akinlabi

AbstractControl and manipulation of residual stresses in thin films is a key for attaining coatings with high mechanical and tribological performance. It is therefore imperative to have reliable residual stress measurements methods to further understand the dynamics involved. The sin2ψ method of X-ray diffraction was used to investigate the residual stresses on the tungsten carbide cobalt thin films deposited on a mild steel surface to understand the how the deposition parameters influence the generation of residual stresses within the substrate surface. X-ray spectra of the surface revealed an amorphous phase of the thin film therefore the stress measured was of the substrate surface and the effects of sputtering parameters on residual stress were analysed. Compressive stresses were identified within all samples studied. The results reveal that as the sputtering parameters are varied, the residual stresses also change. Optimum deposition parameters in terms of residual stresses were suggested.


2009 ◽  
Vol 68 ◽  
pp. 69-76 ◽  
Author(s):  
S. Thanikaikarasan ◽  
T. Mahalingam ◽  
K. Sundaram ◽  
Tae Kyu Kim ◽  
Yong Deak Kim ◽  
...  

Cadmium iron selenide (Cd-Fe-Se) thin films were deposited onto tin oxide (SnO2) coated conducting glass substrates from an aqueous electrolytic bath containing CdSO4, FeSO4 and SeO2 by potentiostatic electrodeposition. The deposition potentials of Cadmium (Cd), Iron (Fe), Selenium (Se) and Cadmium-Iron-Selenide (Cd-Fe-Se) were determined from linear cathodic polarization curves. The deposited films were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive analysis by x-rays (EDX) and optical absorption techniques, respectively. X-ray diffraction patterns shows that the deposited films are found to be hexagonal structure with preferential orientation along (100) plane. The effect of FeSO4 concentration on structural, morphological, compositional and optical properties of the films are studied and discussed in detail.


2017 ◽  
Vol 395 ◽  
pp. 16-23 ◽  
Author(s):  
E. Dobročka ◽  
P. Novák ◽  
D. Búc ◽  
L. Harmatha ◽  
J. Murín

2016 ◽  
Vol 19 (1) ◽  
pp. 015-019 ◽  
Author(s):  
Jebadurai Joy Jeba Vijila ◽  
Kannusamy Mohanraj ◽  
Sethuramachandran Thanikaikarasan ◽  
Ganesan Sivakumar ◽  
Thaiyan Mahalingam ◽  
...  

Thin films of CuSbS2 have been deposited on ultrasonically cleaned glass substrates using a simple chemical bath deposition technique. Prepared films have been characterized using X-ray diffraction, Field Emission Scanning Electron Microscopy and UV-Vis-NIR spectroscopic techniques, respectively. X-ray diffraction analysis revealed that the prepared films possess polycrystalline in nature with orthorhombic CuSbS2 in addition to secondary phase of monoclinic Cu3SbS3 and cubic Cu12Sb4S13 for different copper concentrations. Field Emission Scanning Electron Spectroscopic analysis showed that the prepared films possess spherical shaped grains with irregular shaped clusters. Optical absorption analysis showed that the prepared films possess band gap value in the range between 1.7 and 2.4 eV.


2018 ◽  
Vol 21 (1) ◽  
pp. 015-019
Author(s):  
P. Jeyakumar ◽  
S. Thanikaikarasan ◽  
B. Natarajan ◽  
T. Mahalingam ◽  
Luis Ixtlilco

Copper Telluride thin films have been prepared on Fluorine doped Tin Oxide coated conducting glass substrates using electrodeposition technique. Cyclic voltammetric analysis has been carried out to analyze the growth mechanism of the deposited films. Thickness value of the deposited films has been estimated using Stylus profilometry. X-ray diffraction pattern revealed that the prepared films possess polycrystalline in nature. Microstructural parameters such as crystallite size, strain and dislocation density are evaluated using observed X-ray diffraction data. Optical absorption analysis showed that the prepared films are found to exhibit band gap value around 2.03 eV.


2012 ◽  
Vol 510-511 ◽  
pp. 89-97
Author(s):  
G.H. Tariq ◽  
M. Anis-ur-Rehman

To overcome the naturally existing Schottky barrier problem between p-CdTe and any metal, an intermediate semiconductor thin buffer layer is a better choice prior to the final metallization for contact. Among many investigated back contact materials the ZnTe is suitable as a buffer layer. ZnTe thin films were deposited onto glass substrates by the thermal evaporation technique under vacuum ~2×10-5mbar. Undoped ZnTe thin films are highly resistive, extrinsic doping of Cu was made to improve the electrical conductivity. Films were doped by immersing in Cu NO32.5H2O solutions for Cu doping. To optimize the growth parameters the prepared films were characterized using various techniques. The structural analysis of these films was performed by X-ray diffraction (XRD) technique and optical transmission. X-ray diffraction identified the phases present in these films and also observed that the prepared films were polycrystalline. Also the spectral dependence of absorption coefficient was determined from spectrophotometer. Energy band gap index were calculated from obtained optical measurements data.


Sign in / Sign up

Export Citation Format

Share Document