Characterization of Silicide Formation of LPCVD-W By Means of Rutherford Backscatrering Spectrometry and X-Ray Diffractometry

1989 ◽  
Vol 168 ◽  
Author(s):  
S.-L. Zhang ◽  
R. Buchta ◽  
M. Östling

AbstractTungsten disilicide (WSi2 ) was formed by annealing 185 nm and 750 nm thick LPCVD-W films deposited on <100>-Si substrates. The thickness of the formed WSi2 was observed by Rutherford backscattering measurements (RBS) to increase parabolically with the annealing time. This agrees with the behavior reported in the literature for sputter deposited or evaporated W films. However, a higher stlicide growth rate was found in this work. An activation energy of 2.6 eV/atom was measured, which is smaller than those for sputter deposited or evaporated W films. The crystal structures of the formed WSi2 and the unreacted W films were analyzed using X-ray diffraction (XRD) technique. The thermal history of the samples was found to play an important role for the crystal structure of the unreacted W and formed WSi2. The as-deposited W films became more oriented to the <100> direction with increasing film thickness, while the unreacted W films on top of the formed WSi2, from the samples annealed at temperatures from 700 to 800°C, became more <100> direction dominated with decreasing W film thickness. The preferred orientation of the grown WSi2 films also varied with the silicidation conditions. These observations indicate that the simple method of determining W film thickness by comparing the W diffraction peak heights of the remaining W films after heat treatment to a reference sample will unavoidably introduce large errors. A compensation technique was suggested where both the W and WSi2 diffraction signals were used. A parameter x, a function of reacted W thickness, was introduced to fit the compensation procedure. The conclusion of this study is that attention should be paid to the orientation change of W and WSi2 films during heat treatment if XRD is employed to study the kinetics of WSi2 formation.

1987 ◽  
Vol 108 ◽  
Author(s):  
S. N. Farrens ◽  
J. H. Perepezko ◽  
B. L. Doyle ◽  
S. R. Lee

ABSTRACTThe interdiffusion and crystallization reactions between amorphous Ni-Nb alloy films and Si substrates and several overlayer metals have been monitored by x-ray diffraction and high resolution Rutherford backscattering spectroscopy. Free standing amorphous thin films of Ni-Nb alloys crystallize in one hour at temperatures between 600–625 °C and show little dependence of the crystallization temperature, Tx, on composition over the range from 30–80 at.% Ni. However, in films that are sputter deposited onto Si substrates Tx tends to increase with increasing Nb composition. Ni60Nb40 samples without overlayers crystallize at 650–700 °C. Enhancement of the thermal stability to 700–750 °C is achieved with a Nb overlayer. In contrast, a Ni overlayer can reduce Tx to 450 °C. At the film/substrate interface silicide formation reactions with Ni from the film contribute to a destabilization of the amorphous alloy. The modification of Tx with Ni, Nb, and other overlayers appears to be related to changes in the reaction kinetics associated with penetration of the overlayer into the film.


2005 ◽  
Vol 475-479 ◽  
pp. 3819-3822 ◽  
Author(s):  
Shi Qiang Qian ◽  
Jian Sheng Wu

Amorphous thin Films of Ti51.78 Ni22.24Pd25.98 alloys were deposited onto 2 inch diameter n-type (100)Si wafer by r.f. magnetron sputtering. The crystallization temperature from an amorphous state to crystallization of free-standing thin film was found to be 553.1oC, but that of non-free-standing thin film on Si wafer was found to be higher from X-ray diffraction experiment. The film heated 1 h at 550 oC was partly crystallized but at 650 oC was almost whole crystallized. The film heated 1 h at 750 oC quite crystallized and some precipitation appear. Heated 50 h at 450 oC before crystallization the films would be accelerate B19' but restrain B19 formation in succeeding heat-treatment.


1991 ◽  
Vol 6 (9) ◽  
pp. 1886-1891 ◽  
Author(s):  
S-L. Zhang ◽  
R. Buchta ◽  
M. Östling

Tungsten disilicide (WSi2) was formed by annealing tungsten (W) films of 330 nm and 750 nm prepared by low pressure chemical vapor deposition (LPCVD) from tungsten hexafluoride (WF6) on Czochralski 〈100〉-Si substrates. The silicide was found to grow continuously from the WSi2/W interface. The thickness of the formed WSi2 was observed by Rutherford backscattering measurements (RBS) to increase parabolically with the annealing time, with an activation energy of 2.6 eV/atom. The crystal structure of the formed WSi2 and the unreacted W films was analyzed using x-ray diffraction (XRD) technique. The thermal history of the samples was found to play an important role for the film texture of the unreacted W and formed WSi2, indicating that the fast and inexpensive method, XRD, applied as a thickness monitor for kinetics studies of WSi2 growth will undoubtedly introduce large errors. The as-deposited W (on Si) and the unreacted W (on WSi2) were found to be under a tensile stress, as observed by means of the XRD technique.


1997 ◽  
Vol 472 ◽  
Author(s):  
Tilo P. Drüsedau ◽  
Frank Klabunde ◽  
Mirko Lohmann ◽  
Thomas Hempel ◽  
Jurgen Bläsing

ABSTRACTThe crystallite size and orientation in molybdenum films prepared by magnetron sputtering at a low rate of typical 1 Å/s and a pressure of 0.45 Pa was investigated by X-ray diffraction and texture analysis. The surface topography was studied using atomic force microscopy. Increasing the film thickness from 20 nm to 3 μm, the films show a turnover from a (110) fiber texture to a (211) mosaic-like texture. In the early state of growth (20 nm thickness) the development of dome-like structures on the surface is observed. The number of these structures increases with film thickness, whereas their size is weakly influenced. The effect of texture turnover is reduced by increasing the deposition rate by a factor of six, and it is absent for samples mounted above the center of the magnetron source. The effect of texture turnover is related to the bombardment of the films with high energetic argon neutrals resulting from backscattering at the target under oblique angle and causing resputtering. Due to the narrow angular distribution of the reflected argon, bombardment of the substrate plane is inhomogeneous and only significant for regions close to the erosion zone of the magnetron.


2018 ◽  
Vol 941 ◽  
pp. 413-419
Author(s):  
Dany Michell Andrade Centeno ◽  
Hélio Goldenstein

In this work a DP 600 Dual Phase steel, conventionally treated in order to obtain 40 to 60% austenite at the intercritical temperatures, called reference sample, was compared to samples from the same steel, initially fully austenitized and quenched to 100% martensitic structure and subsequently intercritically tempered once (one step) or twice, (two steps) at intercritical temperatures so as to obtain the same volume fractions of austenite as the conventional DP steel. The single step heat treatment is QL, quench and lamellarization; the two step heat treatment is called QLT, quench and lamellarization and tempering. Heat treatments were conducted on a quenching dilatometer. Samples were characterized by optical, SEM-FEG, EBSD imagining and X Ray Diffraction. Mechanical properties were evaluated by microhardness and tensile tests on sub-size specimens. The results show that QL samples present a complex microstructure composed of ferrite (carbide free high temperature tempered martensite) and fresh martensite composed of crystallites of the order of 1 to 5 μm, with volume fractions of ferrite and martensite similar to the reference samples. X-ray diffraction showed the presence of retained austenite in all treatment conditions, larger for the reference samples when compared with the QL; EBSD images show the retained austenite finely dispersed between the martensite laths and within the limits of martensite blocks. The tensile strength of the QL has higher values than reference DP 600 steel for the similar martensite volume, with smaller uniform and total elongations.


Author(s):  
F. Ma ◽  
S. Vivekanand ◽  
K. Barmak ◽  
C. Michaelsen

Solid state reactions in sputter-deposited Nb/Al multilayer thin films have been studied by transmission and analytical electron microscopy (TEM/AEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The Nb/Al multilayer thin films for TEM studies were sputter-deposited on (1102)sapphire substrates. The periodicity of the films is in the range 10-500 nm. The overall composition of the films are 1/3, 2/1, and 3/1 Nb/Al, corresponding to the stoichiometric composition of the three intermetallic phases in this system.Figure 1 is a TEM micrograph of an as-deposited film with periodicity A = dA1 + dNb = 72 nm, where d's are layer thicknesses. The polycrystalline nature of the Al and Nb layers with their columnar grain structure is evident in the figure. Both Nb and Al layers exhibit crystallographic texture, with the electron diffraction pattern for this film showing stronger diffraction spots in the direction normal to the multilayer. The X-ray diffraction patterns of all films are dominated by the Al(l 11) and Nb(l 10) peaks and show a merging of these two peaks with decreasing periodicity.


Author(s):  
A. R. Lang

AbstractX-ray topography provides a non-destructive method of mapping point-by-point variations in orientation and reflecting power within crystals. The discovery, made by several workers independently, that in nearly perfect crystals it was possible to detect individual dislocations by X-ray diffraction contrast started an epoch of rapid exploitation of X-ray topography as a new, general method for assessing crystal perfection. Another discovery, that of X-ray Pendellösung, led to important theoretical developments in X-ray diffraction theory and to a new and precise method for measuring structure factors on an absolute scale. Other highlights picked out for mention are studies of Frank-Read dislocation sources, the discovery of long dislocation helices and lines of coaxial dislocation loops in aluminium, of internal magnetic domain structures in Fe-3 wt.% Si, and of stacking faults in silicon and natural diamonds.


2003 ◽  
Vol 780 ◽  
Author(s):  
C. Essary ◽  
V. Craciun ◽  
J. M. Howard ◽  
R. K. Singh

AbstractHf metal thin films were deposited on Si substrates using a pulsed laser deposition technique in vacuum and in ammonia ambients. The films were then oxidized at 400 °C in 300 Torr of O2. Half the samples were oxidized in the presence of ultraviolet (UV) radiation from a Hg lamp array. X-ray photoelectron spectroscopy, atomic force microscopy, and grazing angle X-ray diffraction were used to compare the crystallinity, roughness, and composition of the films. It has been found that UV radiation causes roughening of the films and also promotes crystallization at lower temperatures.Furthermore, increased silicon oxidation at the interface was noted with the UVirradiated samples and was shown to be in the form of a mixed layer using angle-resolved X-ray photoelectron spectroscopy. Incorporation of nitrogen into the film reduces the oxidation of the silicon interface.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1154
Author(s):  
Diego E. Lozano ◽  
George E. Totten ◽  
Yaneth Bedolla-Gil ◽  
Martha Guerrero-Mata ◽  
Marcel Carpio ◽  
...  

Automotive components manufacturers use the 5160 steel in leaf and coil springs. The industrial heat treatment process consists in austenitizing followed by the oil quenching and tempering process. Typically, compressive residual stresses are induced by shot peening on the surface of automotive springs to bestow compressive residual stresses that improve the fatigue resistance and increase the service life of the parts after heat treatment. In this work, a high-speed quenching was used to achieve compressive residual stresses on the surface of AISI/SAE 5160 steel samples by producing high thermal gradients and interrupting the cooling in order to generate a case-core microstructure. A special laboratory equipment was designed and built, which uses water as the quenching media in a high-speed water chamber. The severity of the cooling was characterized with embedded thermocouples to obtain the cooling curves at different depths from the surface. Samples were cooled for various times to produce different hardened case depths. The microstructure of specimens was observed with a scanning electron microscope (SEM). X-ray diffraction (XRD) was used to estimate the magnitude of residual stresses on the surface of the specimens. Compressive residual stresses at the surface and sub-surface of about −700 MPa were obtained.


1994 ◽  
Vol 342 ◽  
Author(s):  
I. BÁrsony ◽  
J.G.E. Klappe ◽  
É. Vázsonyi ◽  
T. Lohner ◽  
M. Fried

ABSTRACTChemical and mechanical stability of porous silicon layers (PSL) is the prerequisite of any active (luminescent) or passive (e.g. porous substrate) integrated applications. In this work X-ray diffraction (XRD) was used to analyze quantitatively the strain distribution obtained in different morphology PSL that were prepared on (100) p and p+Si substrates. Tetragonal lattice constant distortion can be as high as 1.4% in highly porous “as-prepared” samples. Incoherent optical heating RTO is governed by the absorption in the oxidized specimen. PSL show vertical inhomogeneity according to interpretation of spectroscopic ellipsometry (SE) data. Oxygen incorporation during RTO is controlled by specific surface (in p+ proportional, in p inversely proportional with porosity), while the developing compressive stress depends on pore size, and decreases with porosity in both morphologies.


Sign in / Sign up

Export Citation Format

Share Document