A New Theory for the Debonding of Discontinuous Fibers in an Elastic Matrix

1989 ◽  
Vol 170 ◽  
Author(s):  
Christopher K. Y. Leung ◽  
Victor C. Li

AbstractThe mechanical properties of fiber composites are strongly influenced by the debonding of fibers. When an embedded fiber is loaded from one end, debonding can occur at both the loaded end and the embedded end. Existing theories neglect the possibility of debonding from the embedded end and are thus limited in applications to cases with low fiber volume fraction, low fiber modulus, high interfacial strength/interfacial friction ratio or short fiber length. A new twoway fiber debonding theory, which can extend the validity of one-way debonding theories to all general cases, has recently been developed. In this paper, the physical reason for the occurrence of two-way debonding is discussed. The limit of validity for one-way debonding theories is considered. One-way and two-way debonding theories are then compared with respect to the prediction of composite behaviour. The determination of interfacial parameters from the fiber pull-out test will also be described.

1992 ◽  
Vol 62 (12) ◽  
pp. 749-765 ◽  
Author(s):  
Ning Pan

This article reports an attempt to develop a general constitutive theory governing the mechanical behavior of twisted short fiber structures, starting with a high twist case, so that the effect of fiber slippage during yarn extension can be ignored. A differential equation describing the stress transfer mechanism in a staple yarn is proposed by which both the distributions of fiber tension and lateral pressure along a fiber length during yarn extension are derived. Factors such as fiber dimensions and properties and the effect of the discontinuity of fiber length within the structure are all included in the theory. With certain assumptions, the relationship between the mean fiber-volume fraction and the twist level of the yarn is also established. A quantity called the cohesion factor is defined based on yarn twist and fiber properties as well as on the form of fiber arrangement in the yarn to reflect the effectiveness of fiber gripping by the yarn. By considering the yarn structure as transversely isotropic with a variable fiber-volume fraction depending on the level of twist, the tensile and shear moduli as well as the Poisson's ratios of the structures are theoretically determined. All these predicted results have been verified according to the constitutive restraints of the continuum mechanics, and the final results are also illustrated schematically.


2014 ◽  
Vol 578-579 ◽  
pp. 1504-1511
Author(s):  
Su Mei Liu ◽  
Xiang Jie Liu ◽  
Li Hua Xu

Orthogonal experiment is used to study the influence of splitting load and mixing of polypropylene fiber of different volume fraction, different length and different mass ratio of long and short fiber on permeability of chloride ion in concrete. The results show that the chloride ion diffusion coefficient increases as the stress ratio increasing, and the relationship between them approximately agrees with exponential function. The influences of fiber volume fraction and fiber length on permeability of chloride ion in concrete are significant, and using shorter polypropylene fiber in the range of low volume fraction can lower permeability of chloride ion in concrete, whereas long fiber and large volume fraction will increase the permeability. The effect of lowering permeability of chloride ion in concrete is most obvious, when the fiber volume fraction is 0.1%, the fiber length is the combination of 6mm and 9mm, and the mass ratio of long and short fiber is 1:2.


2017 ◽  
Vol 88 (15) ◽  
pp. 1776-1787 ◽  
Author(s):  
Mohamed Habibi ◽  
Édu Ruiz ◽  
Gilbert Lebrun ◽  
Luc Laperrière

This paper presents an experimental study and modeling of the influence of surface density and fiber length on the permeability of novel nonwoven flax fiber manufactured by the paper making process. Firstly, the relation between surface density, fiber lengths and pore size distribution measured with a porometer capillary instrument is reported in this study. The results show that higher surface density gives a denser fibrous network with a low porosity rate and longer fiber decreases the total number of fibers and increases the pore size for a given surface density. A liquid permeability study was then carried out to identify the impact of surface density, short fiber length and fiber volume fraction on in-plane impregnation of the reinforcement. Permeability was found to be inversely proportional to the reinforcement of surface density. In contrast, an increase of the fiber length increases the in-plane permeability of the reinforcement. Finally, a mathematical modeling is proposed to predict the permeability behavior of these innovative natural fiber webs.


Author(s):  
Jessica N. McClay ◽  
Peter Joyce ◽  
Andrew N. Smith

Measurements of the in-plane thermal conductivity and the directional dependence of Mitsubishi K63B12 pitch-fiber/Epoxy composite from Newport Composites are reported. This composite is being explored for use in the Avanced Seal Delivery System for effective thermal management. The thermal conductivity was measured using a steady state technique. The experimental results were then compared to a model of the thermal conductivity based on the direction of the fibers. These estimates are based on the properties of the constituent materials and volume of fibers in the sample. Therefore the density and the fiber volume fraction were experimentally measured. The thermal conductivity is clearly greatest in the direction of the fibers and decreases as the fibers are rotated off axis. In the case of pitch fiber composite materials, the contribution of the fibers to the thermal conductivity dominates. The experimental data clearly followed the correct trends; however, the measured values were 25% to 35% lower than predicted.


1992 ◽  
Vol 291 ◽  
Author(s):  
L. Monette ◽  
M. P. Anderson ◽  
G. S. Grest

ABSTRACTWe have employed a two-dimensional computer model to study the effect of volume fraction of second phase constituents on load transfer (stiffness) and strength in brittle short-fiber composites, i.e. composites containing a random distribution of aligned fibers, and brittle particulate composites. We find that the efficiency of load transfer to the second phase consituent increases with volume fraction in particulate composites, while it decreases for short-fiber composites. The strength of brittle particulate composites is found to decrease, while the strength of brittle short-fiber composites marginally increases only at fiber volume fractions equal or greater than 0.25.


Sign in / Sign up

Export Citation Format

Share Document