Ion-Beam-Induced Silicide Formation in Nickel Thin Films on Silicon

1982 ◽  
Vol 18 ◽  
Author(s):  
L. J. Chen ◽  
C. Y. Hou

As+-ion-induced silicide formation in nickel thin films on silicon was investigated by Rutherford backscattering spectrometry and transmission electron microscopy. The emphasis was on the study of ion-beam-induced microstructural changes.For 160 keV As+ implantation, amorphization of the interface occurred at a dose of 5 × 1014 cm−2. Ni2Si was found together with an amorphous layer after a 1 × 1015 cm−2 bombardment. For Ni/Si(100) the surface layer became completely amorphous after implantation to 5×1015 cm−2. Silicides were found after a 1×1016 cm−2 irradiation. The amorphous layer was not stable enough to withstand the enormous chemical driving force causing the formation of crystalline silicides as the composition ratio Nsi/NNi reached a critical value. A similar trend for ion-beam-induced reactions was found for 190 keV As+ implantation on Ni/Si(111) as for 160 keV implantation.The results of post-implantation annealing showed major differences from those obtained for directly annealed samples.

1983 ◽  
Vol 104 (1-2) ◽  
pp. 167-173 ◽  
Author(s):  
L.J. Chen ◽  
C.Y. Hou

1997 ◽  
Vol 12 (3) ◽  
pp. 846-851 ◽  
Author(s):  
Xiangjun He ◽  
Si-Ze Yang ◽  
Kun Tao ◽  
Yudian Fan

Pure bulk AlN substrates were prepared by hot-pressing to eliminate the influence of an aid-sintering substance on the interface reactions. AlN thin films were deposited on Si(111) substrates to decrease the influence of charging on the analysis of metal/AlN interfaces with x-ray photoelectron spectroscopy (XPS). Thin films of titanium were deposited on bulk AlN substrates by e-gun evaporation and ion beam assisted deposition (IBAD) and deposited on AlN films in situ by e-gun evaporation. Solid-state reaction products and reaction mechanism of the Ti/AlN system annealed at various temperatures and under IBAD were investigated by XPS, transmission electron microscopy (TEM), x-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS). Ti reacted with AlN to form a laminated structure in the temperature range of 600 °C to 800 °C. The TiAl3 phase was formed adjacent to the AlN substrate, TiN, and Ti4N3−x as well as Ti2N were formed above the TiAl3 layer at the interface. Argon ion bombardment during Ti evaporation promoted the interface reactions. No reaction products were detected for the sample as-deposited by evaporation. However, XPS depth profile of the Ti/AlN/Si sample showed that Ti–N binding existed at the interface between the AlN thin films and the Ti thin films.


1992 ◽  
Vol 279 ◽  
Author(s):  
Yu.N. Erokhin ◽  
B. K. Patnaik ◽  
S. Pramanick ◽  
F. Hong ◽  
C. W. White ◽  
...  

ABSTRACTWe have extended our recent work [1,2] on buried suicide formation by Ni diffusion into a buried amorphous silicon layer to the case where silicide formation is at lower temperatures on silicon substrates which have been preamorphized. The reaction of metal atoms from a 12 nm Ni film evaporated on top of a 65 nm thick surface amorphous layer formed by 35 keV Si+ ion implantation has been investigated at temperature ≤400 °C. Rutherford Backscattering Spectrometry (RBS) with channeling, cross-sectional transmission electron microscopy (XTEM), X-ray diffraction and four-point-probe measurements were used to determine the structure, interfacial morphology, composition and resistivity of the silicide films. It has been found that an increased rate of silicidation occurs for amorphous silicon with respect to crystalline areas permitting a selective control of the silicon area to be contacted during silicide growth. Vacuum furnace annealing at 360 °C for 8 hours followed by an additional step at 400 °C for one hour produces a continuos NiSi2 layer with a resistivity 44 μΩ cm.


Author(s):  
C. Ewins ◽  
J.R. Fryer

The preparation of thin films of organic molecules is currently receiving much attention because of the need to produce good quality thin films for molecular electronics. We have produced thin films of the polycyclic aromatic, perylene C10H12 by evaporation under high vacuum onto a potassium chloride (KCl) substrate. The role of substrate temperature in determining the morphology and crystallography of the films was then investigated by transmission electron microscopy (TEM).The substrate studied was the (001) face of a freshly cleaved crystal of KCl. The temperature of the KCl was controlled by an electric heater or a cold finger. The KCl was heated to 200°C under a vacuum of 10-6 torr and allowed to cool to the desired temperature. The perylene was then evaporated over a period of one minute from a molybdenum boat at a distance of 10cm from the KCl. The perylene thin film was then backed with an amorphous layer of carbon and floated onto copper microscope grids.


1991 ◽  
Vol 223 ◽  
Author(s):  
Qin Fuguang ◽  
Yao Zhenyu ◽  
Ren Zhizhang ◽  
S.-T. Lee ◽  
I. Bello ◽  
...  

ABSTRACTDirect ion beam deposition of carbon films on silicon in the ion energy range of 15–500eV and temperature range of 25–800°C has been studied using mass selected C+ ions under ultrahigh vacuum. The films were characterized with X-ray photoelectron spectroscopy, Raman spectroscopy, and transmission electron microscopy and diffraction analysis. Films deposited at room temperature consist mainly of amorphous carbon. Deposition at a higher temperature, or post-implantation annealing leads to formation of microcrystalline graphite. A deposition temperature above 800°C favors the formation of microcrystalline graphite with a preferred orientation in the (0001) direction. No evidence of diamond formation was observed in these films.


2010 ◽  
Vol 16 (6) ◽  
pp. 662-669 ◽  
Author(s):  
S. Simões ◽  
F. Viana ◽  
A.S. Ramos ◽  
M.T. Vieira ◽  
M.F. Vieira

AbstractReactive multilayer thin films that undergo highly exothermic reactions are attractive choices for applications in ignition, propulsion, and joining systems. Ni/Al reactive multilayer thin films were deposited by dc magnetron sputtering with a period of 14 nm. The microstructure of the as-deposited and heat-treated Ni/Al multilayers was studied by transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) in plan view and in cross section. The cross-section samples for TEM and STEM were prepared by focused ion beam lift-out technique. TEM analysis indicates that the as-deposited samples were composed of Ni and Al. High-resolution TEM images reveal the presence of NiAl in small localized regions. Microstructural characterization shows that heat treating at 450 and 700°C transforms the Ni/Al multilayered structure into equiaxed NiAl fine grains.


1999 ◽  
Vol 14 (5) ◽  
pp. 2012-2022 ◽  
Author(s):  
Andreas Seifert ◽  
Laurent Sagalowicz ◽  
Paul Muralt ◽  
Nava Setter

Pb1−xCaxTiO3 thin films with x = 0−0.3 for pyroelectric applications were deposited on platinized silicon wafers by chemical solution processing. Ca-substitution for Pb in PbTiO3 results in a reduced c/a ratio of the unit cell, which, in turn, leads to better pyroelectric properties. Control of nucleation and growth during rapid thermal annealing to 650 °C allowed the formation of either highly porous or dense (111) oriented films. The inclusion of pores creates a matrix-void composite with the low permittivity desired for pyroelectric applications, resulting in a high figure of merit. The growth mechanisms for the microstructural evolution of both dense and porous films were analyzed by x-ray diffraction, transmission electron microscopy, scanning electron microscopy, and Rutherford backscattering spectrometry and allowed establishment of microstructure/property relationships.


2000 ◽  
Vol 619 ◽  
Author(s):  
F. Niu ◽  
B.H. Hoerman ◽  
B.W. Wessels

ABSTRACTEpitaxial cubic MgO thin films were deposited on single crystal Si (001) substrates by metalorganic molecular beam epitaxy (MOMBE) using the solid precursor magnesium acetylacetonate as the source and an RF excited oxygen plasma as the oxidant. The growth process involved initial formation of an epitaxial β-SiC interlayer followed by direct deposition of a MgO overlayer. The film structure was characterized by X-ray diffraction as well as conventional and high-resolution transmission electron microscopy. Both the MgO overlayer and β-SiC interlayer had an epitaxial relationship such that MgO (001) (or SiC (001)) // Si (001) and MgO [110] (or SiC [110])// Si [110]. No evidence of an amorphous layer was observed at either the MgO/SiC or SiC/Si interface. Dielectric properties of the epitaxial MgO thin films on Si (001) were evaluated from capacitance-voltage (C-V) characteristic of metal-oxide-semiconductor (MOS) structures. The C-V measurements indicated an interface trap density at midgap as low as 1011 to 1012 cm−2 eV−1 and fixed oxide charge of the order of 1011/ cm2, respectively. These results indicate that epitaxial MgO deposited by MOMBE has potential as a gate insulator.


Sign in / Sign up

Export Citation Format

Share Document