The Effect of Sample Substrate on the Structural Properties of Co-Deposited Films of A-Ge:H

1990 ◽  
Vol 192 ◽  
Author(s):  
S.J. Jones ◽  
W.A. Turner ◽  
D. Pang ◽  
W. Paul

ABSTRACTResults from structural measurements on r.f. glow discharge produced a-Ge:H films have been found to be substrate dependent. The variations in the results were found to depend on both the substrate temperature, Ts, and the substrate yield strength. Differential scanning calorimetry results were particularly affected by these parameters. For films prepared at Ts = 150°C, the DSC spectra contain two exothermic peaks when the films are deposited on low yield strength substrates while only one exothermic peak is present for films deposited on high yield strength substrates. One exothermic DSC peak is seen in spectra for all films prepared at Ts = 300°C no matter what substrates were used. This DSC spectral dependence is attributed to differences in the microstructure of films deposited at the two substrate temperatures, as seen in TEM micrographs. X-ray diffraction measurements performed on films annealed to various temperatures show that all of the exothermic DSC peaks described above are associated with the crystallization process. Thus, for the films prepared at low Ts, crystallization is either a one or two step process depending on the yield strength of the substrate.

2013 ◽  
Vol 86 (2) ◽  
pp. 286-298 ◽  
Author(s):  
Ana Catarina de Oliveira Gomes ◽  
Marcia Gomes Oliveira ◽  
Caio Marcio Paranhos ◽  
Bluma Guenther Soares

ABSTRACT Polyamide 6 (PA6)/NBR blends are interesting because of their supposed properties at elevated temperatures. The blend, however, has a critical problem in terms of processing stability, as a result of the thermal degradation of the NBR phase. We evaluate a system of dissimilar addition of antioxidant in each phase (a combination of Irganox®/Irgafos® for the PA phase, and Naugard 445® for the NBR phase) and study the influence of these antioxidants on the properties of the blend. The evaluation was performed through tensile strength, differential scanning calorimetry (DSC), thermogravimetric analysis, and X-ray diffraction analysis. The influence of the antioxidant system on the crystallization process of the PA phase was evaluated through isothermal DSC analysis. Results showed the best combination of antioxidant addition in master batches and during processing.


1991 ◽  
Vol 246 ◽  
Author(s):  
J.A. Horton ◽  
E.P. George ◽  
C.J. Sparks ◽  
M.Y. Kao ◽  
O.B. Cavin ◽  
...  

AbstractA survey by differential scanning calorimetry (DSC) and recovery during heating of indentations on a series of nickel-aluminum alloys showed that the Ni-36 at.% Al composition has the best potential for a recoverable shape memory effect at temperatures above 100°C. The phase transformations were studied by high temperature transmission electron microscopy (TEM) and by high temperature x-ray diffraction (HTXRD). Quenching from 1200°C resulted in a single phase, fully martensitic structure. The initial quenched-in martensites were found by both TEM and X-ray diffraction to consist of primarily a body centered tetragonal (bct) phase with some body centered orthorhombic (bco) phase present. On the first heating cycle, DSC showed an endothermic peak at 121°C and an exothermic peak at 289°C, and upon cooling a martensite exothermic peak at 115° C. Upon subsequent cycles the 289°C peak disappeared. High temperature X-ray diffraction, with a heating rate of 2°C/min, showed the expected transformation of bct phase to B2 between 100 and 200°C, however the bco phase remained intact. At 400 to 450°C the B2 phase transformed to Ni2Al and Ni5Al3. During TEM heating experiments a dislocation-free martensite transformed reversibly to B2 at temperatures less than 150°C. At higher temperatures (nearly 600°C) 1/3, 1/3, 1/3 reflections from an ω-like phase formed. Upon cooling, the 1/3, 1/3, 1/3 reflections disappeared and a more complicated martensite resulted. Boron additions suppressed intergranular fracture and, as expected, resulted in no ductility improvements. Boron additions and/or hot extrusion encouraged the formation of a superordered bct structure with 1/2, 1/2, 0 reflections.


2018 ◽  
Vol 10 (6) ◽  
pp. 181
Author(s):  
Arif Budiman ◽  
Sandra Megantara ◽  
Putri Raraswati ◽  
Tazyinul Qoriah

Objective: The aim of this study was to develop a solid dosage form of glibenclamide with increasing the solubility properties of glibenclamide with cocrystallization method.Methods: Virtual screening was performed to investigate the interaction between glibenclamide and a co-former. Saccharin, the selected co-former, then co-crystallized with glibenclamide with equimolar ratios of 1:1 and 1:2 using the solvent evaporation method. Further characterization was performed using an infra-red (IR) spectrophotometer, differential scanning calorimetry (DSC), and powder x-ray diffraction (PXRD).Results: Co-crystals of 1:2 equimolar ratio were more highly soluble compared to pure glibenclamide (30-fold for 12 h and 24-fold for 24 h). The dissolution rate had also increased from 46.838% of pure glibenclamide to 77.655% of glibenclamide co-crystal in 60 min. There was no chemical reaction observed during the co-crystallization process based on the IR spectrum. However, there was a new peak in the X-Ray diffractogram and a reduction of melting point in the DSC curve, indicating the formation of co-crystals.Conclusion: The optimal co-crystal ratio of glibenclamide-saccharin was found to be 1:2, which was successful in improving the solubility of glibenclamide.


2019 ◽  
Vol 75 (4) ◽  
pp. 451-461 ◽  
Author(s):  
Avantika Hasija ◽  
Deepak Chopra

The concomitant occurrence of dimorphs of diphenyl (3,4-difluorophenyl)phosphoramidate, C18H14F2NO3P, was observed via a solution-mediated crystallization process with variation in the symmetry-free molecules (Z′). The existence of two forms, i.e. Form I (block, Z′ = 1) and Form II (needle, Z′ = 2), was characterized by single-crystal X-ray diffraction, differential scanning calorimetry and powder X-ray diffraction. Furthermore, a quantitative analysis of the energetics of the different intermolecular interactions was carried out via the energy decomposition method (PIXEL), which corroborates with inputs from the energy framework and looks at the topology of the various intermolecular interactions present in both forms. The unequivocally distinguished contribution of strong N—H...O hydrogen bonds along with other interactions, such as C—H...O, C—H...F, π–π and C—H...π, mapped on the Hirshfeld surface is depicted by two-dimensional fingerprint plots. Apart from the major electrostatic contribution from N—H...O hydrogen bonds, the crystal structures are stabilized by contributions from the dispersion energy. The closely related melting points and opposite trends in the calculated lattice energies are interesting to investigate with respect to the thermodynamic stability of the observed dimorphs. The significant variation in the torsion angles in both forms helps in classifying them in the category of conformational polymorphs.


2012 ◽  
Vol 569 ◽  
pp. 297-300 ◽  
Author(s):  
Wei Wang ◽  
Yong Xian Liu ◽  
Xiang Dong Shi ◽  
Jin Hua Li ◽  
J.Y.H. Fuh

This research focused on the synthesis and investigation of the thermal properties and microstructure of the Al2O3/SiO2 /ZrO2 system applied to dental field. The composite ceramic was studied by scanning electron microcopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Detailed investigations of the different proportions of materials on the preparation and microstructural phases of ternary eutectic were presented. Furthermore, the crystallization process was investigated by using DSC and XRD. The results indicate that sintering microstructure of the ternary eutectic composite is greatly influenced by the materials proportions. The synthetically thermal analysis shows that the eutectic temperature of ternary Al2O3/SiO2 /ZrO2 composite is 1040°C, is well matching the phase diagram of Al2O3/SiO2 /ZrO2.


2011 ◽  
Vol 335-336 ◽  
pp. 347-350 ◽  
Author(s):  
Zong Rong Ying ◽  
Zhi Min Dang ◽  
Xiao Hui Yan ◽  
Xiu Ouyang ◽  
Yan Ying Gao

Polypropene (PP)/graphite oxide (GO) nanocomposite was prepared via solution blending and studied by adopting polarized optical microscopy observations, X-ray diffraction analysis and differential scanning calorimetry analysis. It is found that GO acts as an effective heterogeneous nucleation agent. The addition of GO doesn’t change the crystalline structure of PP, but leads to the decrease of spherulite dimension. GO makes the temperature of the crystallization exothermic peak increase, the crystallization temperature range and the half width of the crystallization peak narrow.


1992 ◽  
Vol 285 ◽  
Author(s):  
P. Tiwari ◽  
R. Chowdhury ◽  
J. Narayan

ABSTRACTLaser physical vapor deposition (LPVD) has been used to deposit thin CoSi2 films on (001)silicon at different substrate temperatures ranging from room temperature to 600°C. Particulate-free silicide thin films were characterized by X-ray diffraction, Rutherford backscattering, and high resolution transmission electron microscopy. We have found that films deposited at 200°C and below are amorphous; 400°C deposited films are polycrystalline whereas films deposited at 600°C are of epitaxial nature. The Effect of subsequent annealing on resistivity of room-temperature deposited thin films has been investigated. The resistivity value decreases to less than 15 μΩcm after annealing making these films suitable for microelectronics applications. The correlation between microstructure and properties of these films are discussed.


Author(s):  
C. G. McKamey ◽  
D. M. Kroeger ◽  
D. S. Easton ◽  
J. A. Horton

In a previous paper the results of a study of the crystallization of Zr-Ni metallic glasses of compositions between 55 and 70 at. % Zr were reported. Data from differential scanning calorimetry (DSC) and x-ray diffraction (XRD) were presented and discussed with respect to the phase transformations occurring during the crystallization process. A metastable crystalline phase, shown by DSC and XRD results to appear between 57 and 63.2 at. % Zr, was the first phase to appear upon heating the amorphous metal. (Evidence indicates the stoichiometric composition for this phase is approximately 60% Zr.) This metastable phase transforms to the equilibrium crystalline phases (ZrNi and Zr2Ni) upon further heating. For compositions of 55-57 and 63.5-70% Zr only the equilibrium phases appear upon heating. It was noted that phase separation and chemical short range ordering (SRO) are believed to play an important role in the crystallization of these alloys.


Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 443
Author(s):  
Francisco G. Cuevas ◽  
Sergio Lozano-Perez ◽  
Rosa María Aranda ◽  
Raquel Astacio

The crystallization process, both at the initial and subsequent stages, of amorphous Al88-RE4-Ni8 alloys (RE = Y, Sm and Ce) has been studied. Additionally, the consequences of adding 1 at.% Cu replacing Ni or Al were studied. The stability of the amorphous structure in melt spun ribbons was thermally studied by differential scanning calorimetry, with Ce alloys being the most stable. The effect of Cu to reduce the nanocrystal size during primary crystallization was analyzed by transmission electron microscopy. This latter technique and x-ray diffraction showed the formation of intermetallic phases at higher temperatures. A clear difference was observed for the Ce alloy, with a simpler sequence involving the presence of Al3Ni and Al11Ce3. However, for the Y and Sm alloys, a more complex evolution involving metastable ternary phases before Al19RE5Ni3 appears, takes place. The shape of the intermetallics changes from equiaxial in the Ce alloys to elongate for Y and Sm, with longer particles for Sm and, in general, when Cu is added to the alloy.


Sign in / Sign up

Export Citation Format

Share Document