The Influence of Deposition Conditions on the Properties of a-Sic:H Thin Films

1990 ◽  
Vol 192 ◽  
Author(s):  
L. Magafas ◽  
D. Girginoudi ◽  
N. Georgoulas ◽  
A. Thanailakis

ABSTRACTThe dependence of chemical composition, structure and optoelectronic properties of sputtered a-SiC:H thin films on substrate temperature, Ts, and hydrogen flow rate has been studied. The films are amorphous for the growth conditions used in this work. The chemical composition of the alloys is very little influenced by the Ts, whereas the hydrogen content and the optical absorption coefficient depends strongly on Ts and hydrogen flow rate.

2016 ◽  
Vol 34 (6) ◽  
pp. 061307
Author(s):  
Panagiotis Dimitrakellis ◽  
Eleftherios Amanatides ◽  
Dimitrios Mataras ◽  
Angelos G. Kalampounias ◽  
Nikolaos Spiliopoulos ◽  
...  

2020 ◽  
Vol 105 ◽  
pp. 109899 ◽  
Author(s):  
Divya Agrawal ◽  
S.L. Patel ◽  
Himanshu ◽  
S. Chander ◽  
M.S. Dhaka

Author(s):  
Ashok Jadhavar ◽  
Vidya Doiphode ◽  
Ajinkya Bhorde ◽  
Yogesh Hase ◽  
Pratibha Shinde ◽  
...  

: Herein, we report effect of variation of hydrogen flow rate on properties of Si:H films synthesized using PE-CVD method. Raman spectroscopy analysis show increase in crystalline volume fraction and crystallite size implying that hydrogen flow in PECVD promote the growth of crystallinity in nc-Si:H films with an expense of reduction in deposition rate. FTIR spectroscopy analysis indicates that hydrogen content in the film increases with increase in hydrogen flow rate and hydrogen is predominantly incorporated in Si-H2 and (Si-H2)n bonding configuration. The optical band gap determined using E04 method and Tauc method (ETauc) show increasing trend with increase in hydrogen flow rate and E04 is found higher than ETauc over the entire range of hydrogen flow rate studied. We also found that the defect density and Urbach energy also increases with increase in hydrogen flow rate. Photosensitivity (Photo /Dark) decreases from  103 to  1 when hydrogen flow rate increased from 30 sccm to 100 sccm and can attributed to amorphous-to-nanocrystallization transition in Si:H films. The results obtained from the present study demonstrated that hydrogen flow rate is an important deposition parameter in PE-CVD to synthesize nc-Si:H films.


1991 ◽  
Vol 69 (3-4) ◽  
pp. 317-323 ◽  
Author(s):  
Constantinos Christofides ◽  
Andreas Mandelis ◽  
Albert Engel ◽  
Michel Bisson ◽  
Gord Harling

A photopyroelectric spectrometer with real-time and(or) self-normalization capability was used for both conventional transmission and thermal-wave spectroscopic measurements of amorphous Si thin films, deposited on crystalline Si substrates. Optical-absorption-coefficient spectra were obtained from these measurements and the superior dynamic range of the out-of-phase (quadrature) photopyroelectric signal was established as the preferred measurement method, owing to its zero-background compensation capability. An extension of a photopyroelectric theoretical model was established and successfully tested in the determination of the optical absorption coefficient and the thermal diffusivity of the sample under investigation. Instrumental sensitivity limits of βt ≈ 5 × 10−3 were demonstrated.


2013 ◽  
Vol 13 (4) ◽  
pp. 139-147 ◽  
Author(s):  
Junsheng Jiao

Abstract The output voltage of Solid Oxide Fuel Cell (SOFC) is usually changed with the temperature and hydrogen flow rate. Since the fuel cell can generate a wide range of voltages and currents at the terminals, as a consequence, a constant DC voltage and function cannot be maintained by itself as a DC voltage power supply source. To solve this problem, a simple SOFC electrochemical model is introduced to control the output voltage. The Sliding Mode Control (SMC) is used to control the output voltage of the DC-DC converter for maintaining the constant DC voltage when the temperature and hydrogen flow rate are changed. By the simulation results it can be seen that the SMC technique has improved the transient response and reduced the steady state error of DC voltage.


Sign in / Sign up

Export Citation Format

Share Document