Tensile and Creep Behavior of Ordered Orthorhombic Ti2A1Nb-Based Alloys
ABSTRACTTitanium aluminide alloys with compositions near Ti-25A1-25Nb at.% were prepared by both rapid solidification and ingot techniques. Their tensile and creep properties were studied after heat treatment to produce various microstructures containing ordered orthorhombic (O) [1], ordered beta (βo), and α2 phases. It was found that these alloys had higher specific strength from room temperature to 760°C than conventional α2 alloys. Ductility and tensile strength of O+βo alloys were strongly dependent upon heat treatment, with the highest strength observed as-heat-treated, and the highest ductility after long term aging. The creep resistance of single phase O and two phase O+βo alloys was strongly dependent upon heat treatment.