Tensile and Creep Behavior of Ordered Orthorhombic Ti2A1Nb-Based Alloys

1990 ◽  
Vol 213 ◽  
Author(s):  
R.G. Rowe ◽  
D.G. Konitzer ◽  
A.P. Woodfield ◽  
J.C. Chesnutt

ABSTRACTTitanium aluminide alloys with compositions near Ti-25A1-25Nb at.% were prepared by both rapid solidification and ingot techniques. Their tensile and creep properties were studied after heat treatment to produce various microstructures containing ordered orthorhombic (O) [1], ordered beta (βo), and α2 phases. It was found that these alloys had higher specific strength from room temperature to 760°C than conventional α2 alloys. Ductility and tensile strength of O+βo alloys were strongly dependent upon heat treatment, with the highest strength observed as-heat-treated, and the highest ductility after long term aging. The creep resistance of single phase O and two phase O+βo alloys was strongly dependent upon heat treatment.

1994 ◽  
Vol 364 ◽  
Author(s):  
K. S. Kumar ◽  
P. M. Hazzledine

AbstractThree alloys, single-phase Cr2Hf, a two-phase alloy consisting of Cr solid solution and Cr2Hf, and a two-phase alloy consisting of Hf solid solution and Cr2Hf were cast and heat treated. The C14-to- C15 transformation of the Laves phase, Cr2Hf was studied as a function of heat treatment. According to the existing phase diagram, the Cr2Hf phase exhibits a C14 structure at elevated temperature but transforms to the C15 structure at lower temperatures. Such transformations are known to be extremely sluggish. In the present study, the Cr2Hf phase was found to retain the C14 structure at room temperature in all three compositions in the cast or cast and forged conditions; upon subsequent heat-treatment at various temperatures and time-at-temperatures, however, the C14 structure decomposes to a variety of higher order structures including the 16H, 10H, and 4H structures. These superstructures can be viewed as containing various percentages of the cubic and hexagonal stacking. The C15 structure was not observed for any of the conditions considered.


2000 ◽  
Vol 652 ◽  
Author(s):  
Fritz Appel ◽  
Michael Oehring

ABSTRACTThe paper presents an electron microscope study of phase transformation and recrystallization in an intermetallic α2(Ti3Al) + γ(TiAl) titanium aluminide alloy, after long-term creep. The mechanisms are closely related to the atomic structure of the α2/γ phase boundaries and are probably driven by a non-equilibrium of the phase composition leading to the dissolution of the α2 phase. The α2 /γ transformation is accompanied by the formation of precipitates, because the γ(TiAl)phase has a significantly lower solubility for interstitial impurities than the α2(Ti3Al) phase.


1982 ◽  
Vol 104 (3) ◽  
pp. 234-240 ◽  
Author(s):  
T. J. Louzon

A heat treatment has been developed which produces significant improvements in the tensile properties of Cu-15Ni-8Sn spinodal alloy. The treatment involves solution heat treatment in the two-phase region rather than the single-phase region normally used. After quenching and aging, increased strength and ductility of the alloy over single phase solution heat-treated and aged values were found. The mechanical properties obtained were superior to any previously observed for material of the compositions studied in the solution treated, quenched, and aged condition. Also, the alloys’ transformation kinetics were greatly slowed by the two phase heat-treatment. It is suggested that the increase in strength and slow kinetics of transformation observed are caused by grain size effects and by grain boundary modifications. Resistivity data and etching response corroborate these arguments.


2007 ◽  
Vol 539-543 ◽  
pp. 1469-1474 ◽  
Author(s):  
T.D. Reynolds ◽  
M. Acosta ◽  
David R. Johnson

Alloys of Ru-Al-Cr with compositions between Ru-10Al-35Cr and Ru-3Al-39Cr (at.%) were directionally solidified and heat treated to produce single phase hcp-Ru(Cr,Al) and two phase B2-hcp microstructures. The room temperature fracture toughness, tensile behavior, and cyclic oxidation behavior at 1100°C were investigated and compared to previous results measured from RuAl and Ru-Al-Mo alloys. For microstructures consisting of a Ru(Cr,Al) matrix with fine RuAl precipitate, a good room temperature fracture toughness, tensile ductility, and oxidation resistance at 1100°C were measured.


2010 ◽  
Vol 654-656 ◽  
pp. 500-503 ◽  
Author(s):  
Trevor Sawatzky ◽  
Dong Yi Seo ◽  
H. Saari ◽  
D. Laurin ◽  
Dae Jin Kim ◽  
...  

The microstructure and creep properties of two powder metallurgy (PM) ‘beta gamma’ titanium aluminide alloys are presented. Alloy powders with nominal compositions of TiAl-4Nb-3Mn (G1) and TiAl-2Nb-2Mo (G2) were produced by gas atomization and consolidated by a two-step hot isostatic pressing (HIP) process (1250 °C/200 MPa/1 hour + 1100 °C/200 MPa/3 hours + slow cooling to room temperature). After HIP, the materials were given a step cooled heat treatment (SCHT) of 40 min at 1400 °C, furnace cooling to 1280 °C, and air cooling to room temperature. Selected specimens were aged at 900 °C for 6 or 24 hours. The SCHT yielded similar fully lamellar microstructures for both alloys, with a lamellar spacing of 0.04 m, but with different grain sizes averaging 80 m (G1) and 40 m (G2). The aging treatments generated  precipitates along lamellar colony boundaries in both alloys, but along lamellar interfaces only in alloy G2. Constant load tensile creep tests were performed at 760 °C and 276 MPa. Alloy G2 exhibited superior creep performance compared to alloy G1, due to the quantity and size of  precipitate particles at the lamellar interfaces.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 867
Author(s):  
Yujin Yang

Haynes 282 has attracted attention for casting applications in AUSC power plants due to its good creep properties. However, the market is primarily comprised of wrought Haynes 282, while the cast version is not commercially available. In this study, the microstructure of a large traditional sand cast Haynes 282 was studied from as-cast condition to long-term heat-treated condition by combining experimental data and thermodynamic calculations. The microstructure of a large cast Haynes 282 includes γ, γ’, two types of MX, M23C6 and µ phases. After standard post heat treatment, µ phases were dissolved and precipitated as M6C. The equilibrium state was achieved after 266 h aging at 788 °C, after which γ’ particles began coarsening. These kept to a spherical morphology; the smallest misfit was found with the γ matrix. Once post heat treatment was finished, MX exhibited little morphology and compositional change during the long-term isothermal aging. Grain boundary is covered by discrete M23C6 and M6C precipitates and this morphology keeps stable during isothermal aging. No presence of the needle µ phase have been found at grain boundaries after 10,000 h aging at 788 °C. All these microstructural features indicated that cast Haynes 282 could have a high thermal stability and good creep properties.


2006 ◽  
Vol 980 ◽  
Author(s):  
Motonori Nakamura ◽  
Masahiko Demura ◽  
Ya Xu ◽  
Toshiyuki Hirano

AbstractThe microstructures and room-temperature tensile properties were examined in the 95% cold-rolled and subsequently heat-treated foils of the boron-free Ni(γ)/Ni3Al(γ') two-phase (Ni-18at.%Al) alloys. The electron backscatter diffraction measurements revealed that the recrystallization started at 873 K/0.5 h and that it completed at 1273 K/0.5 h. While the foils showed no tensile elongation in the cold-rolled state, they became ductile after the heat-treatments at 873 K and above. The tensile elongation increased with the increasing heat-treatment temperature: it reached to 14% at 1273 K/0.5 h. The tensile elongation and the fracture strength were high, compared to those in the γ' single-phase foils. The fracture mode was intergranular, and it changed to a mix of intergranular and transgranular in the foils heat-treated at 1273 K/0.5 h, where the area fraction of crack resistant boundaries such as °1, °3 and °9 was high, 0.63. The high ductility was ascribed to the existence of the ductile γ matrix and to the high fraction of crack-resistant boundaries.


Author(s):  
Abhijit Biswas ◽  
Suman Kalyan Das ◽  
Prasanta Sahoo

The microstructural changes of electroless Ni–P–Cu coating at various heat-treatment conditions are investigated to understand its implications on the tribological behavior of the coating. Coatings are heat-treated at temperatures ranging between 200°C and 800 °C and for 1–4 h duration. Ni–P–Cu coatings exhibit two-phase transformations in the temperature range of 350–450 °C and the resulting microstructural changes are found to significantly affect their thermal stability and tribological attributes. Hardness of the coating doubles when heat-treated at 452 °C, due to the formation of harder Ni3P phase and crystalline NiCu. Better friction and wear performance are also noted upon heat treatment of the coating at the phase transformation regime, particularly at 400 °C. Wear mechanism is characterized by a mixed adhesive cum abrasive wear phenomena. Heat treatment at higher temperature (600 °C and above) and longer duration (4 h) results in grain coarsening phenomenon, which negatively influences the hardness and tribological characteristics of the coating. Besides, diffusion of iron from the ferrous substrate as well as greater oxide formation are noticed when the coating is heat-treated at higher temperatures and for longer durations (4 h).


DYNA ◽  
2016 ◽  
Vol 83 (195) ◽  
pp. 77-83 ◽  
Author(s):  
María José Quintana Hernández ◽  
José Ovidio García ◽  
Roberto González Ojeda ◽  
José Ignacio Verdeja

The use of Cu and Ti in Zn alloys improves mechanical properties as solid solution and dispersoid particles (grain refiners) may harden the material and reduce creep deformation. This is one of the main design problems for parts made with Zn alloys, even at room temperature. In this work the mechanical behavior of a Zn-Cu-Ti low alloy is presented using tensile tests at different strain rates, as well as creep tests at different loads to obtain the value of the strain rate coefficient m in samples parallel and perpendicular to the rolling direction of the Zn strip. The microstructure of the alloy in its raw state, as well as heat treated at 250°C, is also analyzed, as the banded structure produced by rolling influences the strengthening mechanisms that can be achieved through the treatment parameters.


Sign in / Sign up

Export Citation Format

Share Document