Effect of Heat Treatment on the Ductility of Ni(γ)/Ni3Al(γ') Two-phase Alloy Foils

2006 ◽  
Vol 980 ◽  
Author(s):  
Motonori Nakamura ◽  
Masahiko Demura ◽  
Ya Xu ◽  
Toshiyuki Hirano

AbstractThe microstructures and room-temperature tensile properties were examined in the 95% cold-rolled and subsequently heat-treated foils of the boron-free Ni(γ)/Ni3Al(γ') two-phase (Ni-18at.%Al) alloys. The electron backscatter diffraction measurements revealed that the recrystallization started at 873 K/0.5 h and that it completed at 1273 K/0.5 h. While the foils showed no tensile elongation in the cold-rolled state, they became ductile after the heat-treatments at 873 K and above. The tensile elongation increased with the increasing heat-treatment temperature: it reached to 14% at 1273 K/0.5 h. The tensile elongation and the fracture strength were high, compared to those in the γ' single-phase foils. The fracture mode was intergranular, and it changed to a mix of intergranular and transgranular in the foils heat-treated at 1273 K/0.5 h, where the area fraction of crack resistant boundaries such as °1, °3 and °9 was high, 0.63. The high ductility was ascribed to the existence of the ductile γ matrix and to the high fraction of crack-resistant boundaries.

1982 ◽  
Vol 104 (3) ◽  
pp. 234-240 ◽  
Author(s):  
T. J. Louzon

A heat treatment has been developed which produces significant improvements in the tensile properties of Cu-15Ni-8Sn spinodal alloy. The treatment involves solution heat treatment in the two-phase region rather than the single-phase region normally used. After quenching and aging, increased strength and ductility of the alloy over single phase solution heat-treated and aged values were found. The mechanical properties obtained were superior to any previously observed for material of the compositions studied in the solution treated, quenched, and aged condition. Also, the alloys’ transformation kinetics were greatly slowed by the two phase heat-treatment. It is suggested that the increase in strength and slow kinetics of transformation observed are caused by grain size effects and by grain boundary modifications. Resistivity data and etching response corroborate these arguments.


2019 ◽  
Vol 271 ◽  
pp. 01005
Author(s):  
Hande Ozcan ◽  
Ji Ma ◽  
Jeremy E. Schaffer ◽  
Ibrahim Karaman

The effects on sample size on abnormal grain growth in inexpensive FeMnAlNi shape memory alloy (SMAs) wires and rod were investigated. It was shown that repeated heat treatments between single phase (bcc) and two phase (bcc + fcc) region resulted in abnormal grains with bamboo structure both in small sized wires and large diameter rods. Microstructural features were investigated using electron backscatter diffraction (EBSD) and it was found that 0.5 mm wires possess strong [011] texture whereas, large diameter rods have random texture after grain growth heat treatments.


1990 ◽  
Vol 213 ◽  
Author(s):  
R.G. Rowe ◽  
D.G. Konitzer ◽  
A.P. Woodfield ◽  
J.C. Chesnutt

ABSTRACTTitanium aluminide alloys with compositions near Ti-25A1-25Nb at.% were prepared by both rapid solidification and ingot techniques. Their tensile and creep properties were studied after heat treatment to produce various microstructures containing ordered orthorhombic (O) [1], ordered beta (βo), and α2 phases. It was found that these alloys had higher specific strength from room temperature to 760°C than conventional α2 alloys. Ductility and tensile strength of O+βo alloys were strongly dependent upon heat treatment, with the highest strength observed as-heat-treated, and the highest ductility after long term aging. The creep resistance of single phase O and two phase O+βo alloys was strongly dependent upon heat treatment.


1994 ◽  
Vol 364 ◽  
Author(s):  
K. S. Kumar ◽  
P. M. Hazzledine

AbstractThree alloys, single-phase Cr2Hf, a two-phase alloy consisting of Cr solid solution and Cr2Hf, and a two-phase alloy consisting of Hf solid solution and Cr2Hf were cast and heat treated. The C14-to- C15 transformation of the Laves phase, Cr2Hf was studied as a function of heat treatment. According to the existing phase diagram, the Cr2Hf phase exhibits a C14 structure at elevated temperature but transforms to the C15 structure at lower temperatures. Such transformations are known to be extremely sluggish. In the present study, the Cr2Hf phase was found to retain the C14 structure at room temperature in all three compositions in the cast or cast and forged conditions; upon subsequent heat-treatment at various temperatures and time-at-temperatures, however, the C14 structure decomposes to a variety of higher order structures including the 16H, 10H, and 4H structures. These superstructures can be viewed as containing various percentages of the cubic and hexagonal stacking. The C15 structure was not observed for any of the conditions considered.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 255
Author(s):  
Dohyung Kim ◽  
Kinam Hong ◽  
Jeesoo Sim ◽  
Junghoon Lee ◽  
Wookjin Lee

In the present study, the shape, memory, and mechanical properties of cold-rolled and annealed Fe-17Mn-5Si-5Cr-4Ni-1Ti-0.3C (wt.%) alloy were investigated. The cold-rolled alloy was annealing heat-treated at different temperatures in the range of 500–900 °C for 30 min. The shape recovery behavior of the alloy was investigated using strip bending test followed by recovery heating. The microstructural evolution and the stress-strain response of the alloy heat-treated at different temperatures revealed that the recovery took place at a heat-treatment temperature higher than 600 °C. Recrystallization occurred when the heat-treatment temperature was higher than 800 °C. Meaningful shape recovery was observed only when the alloy was annealed at temperatures higher than 600 °C. The highest recovery strain of up to 2.56% was achieved with a pre-strain of 5.26% and recovery heating temperature of 400 °C, when the alloy was heat-treated at 700 °C. Conversely, the yield strength reduced significantly with increasing annealing heat-treatment temperature. The experimental observations presented in this paper provide a guideline for post-annealing heat-treatment when a good compromise between mechanical property and shape recovery performance is required.


Author(s):  
A. Leineweber ◽  
M. Löffler ◽  
S. Martin

Abstract Cu6Sn5 intermetallic occurs in the form of differently ordered phases η, η′ and η′′. In solder joints, this intermetallic can undergo changes in composition and the state of order without or while interacting with excess Cu and excess Sn in the system, potentially giving rise to detrimental changes in the mechanical properties of the solder. In order to study such processes in fundamental detail and to get more detailed information about the metastable and stable phase equilibria, model alloys consisting of Cu3Sn + Cu6Sn5 as well as Cu6Sn5 + Sn-rich melt were heat treated. Powder x-ray diffraction and scanning electron microscopy supplemented by electron backscatter diffraction were used to investigate the structural and microstructural changes. It was shown that Sn-poor η can increase its Sn content by Cu3Sn precipitation at grain boundaries or by uptake of Sn from the Sn-rich melt. From the kinetics of the former process at 513 K and the grain size of the η phase, we obtained an interdiffusion coefficient in η of (3 ± 1) × 10−16 m2 s−1. Comparison of this value with literature data implies that this value reflects pure volume (inter)diffusion, while Cu6Sn5 growth at low temperature is typically strongly influenced by grain-boundary diffusion. These investigations also confirm that η′′ forming below a composition-dependent transus temperature gradually enriches in Sn content, confirming that Sn-poor η′′ is metastable against decomposition into Cu3Sn and more Sn-rich η or (at lower temperatures) η′. Graphic Abstract


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 643
Author(s):  
Xiaoyu Wu ◽  
Shufeng Xie ◽  
Kangwei Xu ◽  
Lei Huang ◽  
Daling Wei ◽  
...  

Burning loss of graphene in the high-temperature plasma-spraying process is a critical issue, significantly limiting the remarkable performance improvement in graphene reinforced ceramic coatings. Here, we reported an effective approach to enhance the graphene retention, and thus improve the performance of plasma-sprayed alumina/graphene nanoplatelets (Al2O3/GNPs) coatings by heat treatment of agglomerated Al2O3/GNPs powders. The effect of powder heat treatment on the microstructure, GNPs retention, and electrical conductivity of Al2O3/GNPs coatings were systematically investigated. The results indicated that, with the increase in the powder heat treatment temperature, the plasma-sprayed Al2O3/GNPs coatings exhibited decreased porosity and improved adhesive strength. Thermogravimetric analysis and Raman spectra results indicated that increased GNPs retention from 12.9% to 28.4%, and further to 37.4%, as well as decreased structural defects, were obtained for the AG, AG850, and AG1280 coatings, respectively, which were fabricated by using AG powders without heat treatment, powders heat-treated at 850 °C, and powders heat-treated at 1280 °C. Moreover, the electrical conductivities of AG, AG850, and AG1280 coatings exhibited 3 orders, 4 orders, and 7 orders of magnitude higher than that of Al2O3 coating, respectively. Powder heat treatment is considered to increase the melting degree of agglomerated alumina particles, eventually leaving less thermal energy for GNPs to burn; thus, a high retention amount and structural integrity of GNPs and significantly enhanced electrical conductivity were achieved for the plasma-sprayed Al2O3/GNPs coatings.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1264
Author(s):  
Teng-Chun Yang ◽  
Tung-Lin Wu ◽  
Chin-Hao Yeh

The influence of heat treatment on the physico-mechanical properties, water resistance, and creep behavior of moso bamboo (Phyllostachys pubescens) was determined in this study. The results revealed that the density, moisture content, and flexural properties showed negative relationships with the heat treatment temperature, while an improvement in the dimensional stability (anti-swelling efficiency and anti-water absorption efficiency) of heat-treated samples was observed during water absorption tests. Additionally, the creep master curves of the untreated and heat-treated samples were successfully constructed using the stepped isostress method (SSM) at a series of elevated stresses. Furthermore, the SSM-predicted creep compliance curves fit well with the 90-day full-scale experimental data. When the heat treatment temperature increased to 180 °C, the degradation ratio of the creep resistance (rd) significantly increased over all periods. However, the rd of the tested bamboo decreased as the heat treatment temperature increased up to 220 °C.


Author(s):  
Abhijit Biswas ◽  
Suman Kalyan Das ◽  
Prasanta Sahoo

The microstructural changes of electroless Ni–P–Cu coating at various heat-treatment conditions are investigated to understand its implications on the tribological behavior of the coating. Coatings are heat-treated at temperatures ranging between 200°C and 800 °C and for 1–4 h duration. Ni–P–Cu coatings exhibit two-phase transformations in the temperature range of 350–450 °C and the resulting microstructural changes are found to significantly affect their thermal stability and tribological attributes. Hardness of the coating doubles when heat-treated at 452 °C, due to the formation of harder Ni3P phase and crystalline NiCu. Better friction and wear performance are also noted upon heat treatment of the coating at the phase transformation regime, particularly at 400 °C. Wear mechanism is characterized by a mixed adhesive cum abrasive wear phenomena. Heat treatment at higher temperature (600 °C and above) and longer duration (4 h) results in grain coarsening phenomenon, which negatively influences the hardness and tribological characteristics of the coating. Besides, diffusion of iron from the ferrous substrate as well as greater oxide formation are noticed when the coating is heat-treated at higher temperatures and for longer durations (4 h).


2013 ◽  
Vol 747-748 ◽  
pp. 497-501
Author(s):  
Na Liu ◽  
Zhou Li ◽  
Guo Qing Zhang ◽  
Hua Yuan ◽  
Wen Yong Xu ◽  
...  

Powder metallurgical TiAl alloy was fabricated by gas atomization powders, and the effect of heat treatment temperature on the microstructure evolution and room tensile properties of PM TiAl alloy was investigated. The uniform fine duplex microstructure was formed in PM TiAl based alloy after being heat treated at 1250/2h followed by furnace cooling (FC)+ 900/6h (FC). When the first step heat treatment temperature was improved to 1360/1h, the near lamellar microstructure was achieved. The ductility of the alloy after heat treatment improved markedly to 1.2% and 0.6%, but the tensile strength decreased to 570MPa and 600MPa compared to 655MPa of as-HIP TiAl alloy. Post heat treatment at the higher temperature in the alpha plus gamma field would regenerate thermally induced porosity (TIP).


Sign in / Sign up

Export Citation Format

Share Document