High-Performance Structure of Light-Emitting Diode for GaAs on Si Tetsuroh Minemura

1991 ◽  
Vol 240 ◽  
Author(s):  
Junko Asano ◽  
Yoshiaki Yazawa

ABSTRACTThe Light-emitting diode (LED) structures have been investigated to realize high-performance LEDs on Si substrates. The light intensity of the LEDs with p-GaAs / n-GaAs / Si structures, which was effected from thickness of the p-GaAs layer, was only about 55% of the homoepitaxialLED. The light intensity of the LED with an n-GaAs/p-GaAs/Si structure, however, was about four times stronger than those of p-GaAs/n-GaAs/Si structures. After continuous operation for two hours, the intensity still kept much stronger than those of the LEDs with p-GaAs / n-GaAs / Si structures, although it decreased to 15% of the homoepitaxial LED.

Crystals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 335 ◽  
Author(s):  
Wei-Hsiung Tseng ◽  
Diana Juan ◽  
Wei-Cheng Hsiao ◽  
Cheng-Han Chan ◽  
Hsin-Yi Ma ◽  
...  

In this study, our proposed ultraviolet light-emitting diode (UV LED) mosquito-trapping lamp is designed to control diseases brought by insects such as mosquitoes. In order to enable the device to efficiently catch mosquitoes in a wider area, a secondary freeform lens (SFL) is designed for UV LED. The lens is mounted on a 3 W UV LED light bar as a mosquito-trapping lamp of the new UV LED light bar module to achieve axially symmetric light intensity distribution. The special SFL is used to enhance the trapping capabilities of the mosquito-trapping lamp. The results show that when the secondary freeform surface lens is applied to the experimental outdoor UV LED mosquito-trapping lamp, the trapping range can be expanded to 100π·m2 and the captured mosquitoes increased by about 300%.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Mingming Jiang ◽  
Fupeng Zhang ◽  
Kai Tang ◽  
Peng Wan ◽  
Caixia Kan

Achieving electrically-driven exciton-polaritons has drawn substantial attention toward developing ultralow-threshold coherent light sources, containing polariton laser devices and high-performance light-emitting diodes (LEDs). In this work, we demonstrate an electrically driven...


Nanoscale ◽  
2021 ◽  
Author(s):  
Soon-Hwan Kwon ◽  
Tae-Hyeon Kim ◽  
Sang-Min Kim ◽  
Semi Oh ◽  
Kyoung-Kook Kim

Nanostructured semiconducting metal oxides such as SnO2, ZnO, TiO2, and CuO have been widely used to fabricate high performance gas sensors. To improve the sensitivity and stability of gas sensors,...


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Fumiya Osawa ◽  
Kazuhiro Marumoto

Abstract Spin-states and charge-trappings in blue organic light-emitting diodes (OLEDs) are important issues for developing high-device-performance application such as full-color displays and white illumination. However, they have not yet been completely clarified because of the lack of a study from a microscopic viewpoint. Here, we report operando electron spin resonance (ESR) spectroscopy to investigate the spin-states and charge-trappings in organic semiconductor materials used for blue OLEDs such as a blue light-emitting material 1-bis(2-naphthyl)anthracene (ADN) using metal–insulator–semiconductor (MIS) diodes, hole or electron only devices, and blue OLEDs from the microscopic viewpoint. We have clarified spin-states of electrically accumulated holes and electrons and their charge-trappings in the MIS diodes at the molecular level by directly observing their electrically-induced ESR signals; the spin-states are well reproduced by density functional theory. In contrast to a green light-emitting material, the ADN radical anions largely accumulate in the film, which will cause the large degradation of the molecule and devices. The result will give deeper understanding of blue OLEDs and be useful for developing high-performance and durable devices.


Author(s):  
Hitoshi Okada ◽  
Susumu Itoh ◽  
Shohei Kawamoto ◽  
Miyo Ozaki ◽  
Takashi Kusaka

Objective Investigation of the reactivity of fractions of bilirubin photoisomers with the vanadic acid oxidation method. Methods Bilirubin photoisomers were prepared by irradiating a bilirubin/human serum albumin solution with blue light emitting diode. Direct bilirubin and bilirubin fractions were measured using the vanadic acid oxidation method and high-performance liquid chromatography in the sample before and after irradiation. Results Direct bilirubin was increased in the solution containing bilirubin photoisomers. ( EE)-/( EZ) -cyclobilirubin-IXα and ( ZE)-/( EZ)-bilirubin-IXα completely disappeared after the addition of vanadic acid. Conclusion Bilirubin photoisomers reacted as direct bilirubin in the vanadic acid oxidation method.


2018 ◽  
Vol 5 (6) ◽  
pp. 180205 ◽  
Author(s):  
Elizabeth G. Rowse ◽  
Stephen Harris ◽  
Gareth Jones

Emerging lighting technologies provide opportunities for reducing carbon footprints, and for biodiversity conservation. In addition to installing light-emitting diode street lights, many local authorities are also dimming street lights. This might benefit light-averse bat species by creating dark refuges for these bats to forage and commute in human-dominated habitats. We conducted a field experiment to determine how light intensity affects the activity of the light-opportunistic Pipistrellus pipistrellus and light-averse bats in the genus Myotis. We used four lighting levels controlled under a central management system at existing street lights in a suburban environment (0, 25, 50 and 100% of the original output). Higher light intensities (50 and 100% of original output) increased the activity of light-opportunistic species but reduced the activity of light-averse bats. Compared to the unlit treatment, the 25% lighting level did not significantly affect either P. pipistrellus or Myotis spp. Our results suggest that it is possible to achieve a light intensity that provides both economic and ecological benefits by providing sufficient light for human requirements while not deterring light-averse bats.


Author(s):  
Soo-Ghang Ihn ◽  
Eun Suk Kwon ◽  
Yongsik Jung ◽  
Jong Soo Kim ◽  
Sungho Nam ◽  
...  

We present a high-performance blue phosphorescent organic light-emitting diode exhibiting a low operating voltage (4.1 V), high external quantum efficiency (23.4%, at 500 cd m-2) with a low efficiency roll-off...


Micromachines ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 318 ◽  
Author(s):  
Hiroyuki Yamada ◽  
Naoto Shirahata

Here we report a quantum dot light emitting diode (QLED), in which a layer of colloidal silicon quantum dots (SiQDs) works as the optically active component, exhibiting a strong electroluminescence (EL) spectrum peaking at 620 nm. We could not see any fluctuation of the EL spectral peak, even in air, when the operation voltage varied in the range from 4 to 5 V because of the possible advantage of the inverted device structure. The pale-orange EL spectrum was as narrow as 95 nm. Interestingly, the EL spectrum was narrower than the corresponding photoluminescence (PL) spectrum. The EL emission was strong enough to be seen by the naked eye. The currently obtained brightness (∼4200 cd/m2), the 0.033% external quantum efficiency (EQE), and a turn-on voltage as low as 2.8 V show a sufficiently high performance when compared to other orange-light-emitting Si-QLEDs in the literature. We also observed a parasitic emission from the neighboring compositional layer (i.e., the zinc oxide layer), and its intensity increased with the driving voltage of the device.


Sign in / Sign up

Export Citation Format

Share Document