Preparation of Pb-Based Ferroelectric thin films by Ion- and Photo-Assisted Deposition

1991 ◽  
Vol 243 ◽  
Author(s):  
Shigenori Hayashi ◽  
Kenji Iijima ◽  
Takashi Hirao

AbstractThin film process for Pb-based perovskite ferroelectrics has been investigated. Synthesis of epitaxial PLZT, PLT and PZT thin films by rfmagnetron sputtering in our laboratory was reviewed. Basic thin film process and applications were discussed. For further investigation, film preparation process was developed by co-deposition and assisted deposition techniques. The substrate temperature required for in-situ preparation of perovskite could be reduced to room temperature by an ion- and photoassisted co-evaporation technique.

1990 ◽  
Vol 200 ◽  
Author(s):  
Hideaki Adachi ◽  
Kiyotaka Wasa

ABSTRACTThin film process for ferroelectric perovskite oxides has been investigated. Amorphous, polycrystal, and epitaxial thin films of Pb-based perovskite ferroelectrics were prepared by rf-magnetron sputtering, and their properties were discussed. Epitaxial PLZT thin films showed similar dielectric properties as PLZT bulk ceramics and also showed strong electrooptic effect. For further investigation, film preparation process was developed by multitarget sputtering and quaternary PLZT thin film with excellent epitaxial crystallinity was realized by using a graded composition layer.


Author(s):  
R. C. Moretz ◽  
G. G. Hausner ◽  
D. F. Parsons

Use of the electron microscope to examine wet objects is possible due to the small mass thickness of the equilibrium pressure of water vapor at room temperature. Previous attempts to examine hydrated biological objects and water itself used a chamber consisting of two small apertures sealed by two thin films. Extensive work in our laboratory showed that such films have an 80% failure rate when wet. Using the principle of differential pumping of the microscope column, we can use open apertures in place of thin film windows.Fig. 1 shows the modified Siemens la specimen chamber with the connections to the water supply and the auxiliary pumping station. A mechanical pump is connected to the vapor supply via a 100μ aperture to maintain steady-state conditions.


Author(s):  
K. Barmak

Generally, processing of thin films involves several annealing steps in addition to the deposition step. During the annealing steps, diffusion, transformations and reactions take place. In this paper, examples of the use of TEM and AEM for ex situ and in situ studies of reactions and phase transformations in thin films will be presented.The ex situ studies were carried out on Nb/Al multilayer thin films annealed to different stages of reaction. Figure 1 shows a multilayer with dNb = 383 and dAl = 117 nm annealed at 750°C for 4 hours. As can be seen in the micrograph, there are four phases, Nb/Nb3-xAl/Nb2-xAl/NbAl3, present in the film at this stage of the reaction. The composition of each of the four regions marked 1-4 was obtained by EDX analysis. The absolute concentration in each region could not be determined due to the lack of thickness and geometry parameters that were required to make the necessary absorption and fluorescence corrections.


2006 ◽  
Vol 326-328 ◽  
pp. 689-692
Author(s):  
Seung Jae Moon

The thermal conductivity of amorphous silicon (a-Si) thin films is determined by using the non-intrusive, in-situ optical transmission measurement. The thermal conductivity of a-Si is a key parameter in understanding the mechanism of the recrystallization of polysilicon (p-Si) during the laser annealing process to fabricate the thin film transistors with uniform characteristics which are used as switches in the active matrix liquid crystal displays. Since it is well known that the physical properties are dependent on the process parameters of the thin film deposition process, the thermal conductivity should be measured. The temperature dependence of the film complex refractive index is determined by spectroscopic ellipsometry. A nanosecond KrF excimer laser at the wavelength of 248 nm is used to raise the temperature of the thin films without melting of the thin film. In-situ transmission signal is obtained during the heating process. The acquired transmission signal is fitted with predictions obtained by coupling conductive heat transfer with multi-layer thin film optics in the optical transmission measurement.


2016 ◽  
Vol 45 (43) ◽  
pp. 17312-17318 ◽  
Author(s):  
Eun-Kyung Kim ◽  
Dasom Park ◽  
Nabeen K. Shrestha ◽  
Jinho Chang ◽  
Cheol-Woo Yi ◽  
...  

An aqueous solution based synthetic method for binder-free Ag2Te thin films using ion exchange induced chemical transformation of Ag/AgxO thin films.


2006 ◽  
Vol 21 (2) ◽  
pp. 505-511 ◽  
Author(s):  
Lili Hu ◽  
Junlan Wang ◽  
Zijian Li ◽  
Shuang Li ◽  
Yushan Yan

Nanoporous silica zeolite thin films are promising candidates for future generation low-dielectric constant (low-k) materials. During the integration with metal interconnects, residual stresses resulting from the packaging processes may cause the low-k thin films to fracture or delaminate from the substrates. To achieve high-quality low-k zeolite thin films, it is important to carefully evaluate their adhesion performance. In this paper, a previously reported laser spallation technique is modified to investigate the interfacial adhesion of zeolite thin film-Si substrate interfaces fabricated using three different methods: spin-on, seeded growth, and in situ growth. The experimental results reported here show that seeded growth generates films with the highest measured adhesion strength (801 ± 68 MPa), followed by the in situ growth (324 ± 17 MPa), then by the spin-on (111 ± 29 MPa). The influence of the deposition method on film–substrate adhesion is discussed. This is the first time that the interfacial strength of zeolite thin films-Si substrates has been quantitatively evaluated. This paper is of great significance for the future applications of low-k zeolite thin film materials.


MRS Advances ◽  
2016 ◽  
Vol 1 (37) ◽  
pp. 2635-2640 ◽  
Author(s):  
Adele Moatti ◽  
Reza Bayati ◽  
Srinivasa Rao Singamaneni ◽  
Jagdish Narayan

ABSTRACTBi-epitaxial VO2 thin films with [011] out-of-plane orientation were integrated with Si(100) substrates through TiO2/TiN buffer layers. At the first step, TiN is grown epitaxially on Si(100), where a cube-on-cube epitaxy is achieved. Then, TiN was oxidized in-situ ending up having epitaxial r-TiO2. Finally, VO2 was deposited on top of TiO2. The alignment across the interfaces was stablished as VO2(011)║TiO2(110)║TiN(100)║Si(100) and VO2(110) /VO2(010)║TiO2(011)║TiN(112)║Si(112). The inter-planar spacing of VO2(010) and TiO2(011) equal to 2.26 and 2.50 Å, respectively. This results in a 9.78% tensile misfit strain in VO2(010) lattice which relaxes through 9/10 alteration domains with a frequency factor of 0.5, according to the domain matching epitaxy paradigm. Also, the inter-planar spacing of VO2(011) and TiO2(011) equals to 3.19 and 2.50 Å, respectively. This results in a 27.6% compressive misfit strain in VO2(011) lattice which relaxes through 3/4 alteration domains with a frequency factor of 0.57. We studied semiconductor to metal transition characteristics of VO2/TiO2/TiN/Si heterostructures and established a correlation between intrinsic defects and magnetic properties.


2013 ◽  
Vol 710 ◽  
pp. 170-173
Author(s):  
Lian Ping Chen ◽  
Yuan Hong Gao

It is hardly possible to obtain rare earth doped CaWO4thin films directly through electrochemical techniques. A two-step method has been proposed to synthesize CaWO4:(Eu3+,Tb3+) thin films at room temperature. X-ray diffraction, energy dispersive X-ray analysis, spectrophotometer were used to characterize their phase, composition and luminescent properties. Results reveal that (Eu3+,Tb3+)-doped CaWO4films have a tetragonal phase. When the ratio of n (Eu)/n (Tb) in the solution is up to 3:1, CaWO4:(Eu3+,Tb3+) thin film will be enriched with Tb element; on the contrary, when the ratio in the solution is lower than 1:4, CaWO4:(Eu3+,Tb3+) thin film will be enriched with Eu element. Under the excitation of 242 nm, sharp emission peaks at 612, 543, 489 and 589 nm have been observed for CaWO4:(Eu3+,Tb3+) thin films.


Sign in / Sign up

Export Citation Format

Share Document