Microstructural Features and Shape-Memory Characteristics of Melt-Spun Ni-Al-Fe-B Ribbons

1991 ◽  
Vol 246 ◽  
Author(s):  
C. T. Liu ◽  
C. J. Sparks ◽  
J. A. Horton ◽  
E. P. George ◽  
C. A. Carmichael ◽  
...  

AbstractThis paper summarizes our recent study of NiAI+Fe+B alloy ribbons containing 4 to 20% Fe and doped with 300 wt ppm B. Alloy ribbons were successfully fabricated by rapid solidification via melt spinning. The alloys with 8% Fe and 34% Al-equivalent [=Al%+(Fe%)/2] showed the best bend ductility at room temperature. The ribbons exhibited a reversible martensite (body-centered orthorombic structure) to B2 transformation as evidenced by DSC, X-ray and TEM studies. The shape-memory effect, as characterized by measuring the recovery of bend angles with temperature, is sensitive to alloy composition, with the best recovery observed in SMA-15 (B-doped Ni-27% Al-14% Fe). Annealing at 600°C causes aging embrittlement; in particular, in alloys containing 12% Fe.

2013 ◽  
Vol 738-739 ◽  
pp. 247-251 ◽  
Author(s):  
Ana Druker ◽  
Paulo La Roca ◽  
Philippe Vermaut ◽  
Patrick Ochim ◽  
Jorge Malarría

At room temperature, Fe-15Mn-5Si-9Cr-5Ni alloys are usually austenitic and the application of a stress induces a reversible martensitic transformation leading to a shape memory effect (SME). However, when a ribbon of this material is obtained by melt-spinning, the rapid solidification stabilizes a high-temperature ferritic phase. The goals of this work were to find the appropriate heat treatment in order to recover the equilibrium austenitic phase, characterize the ribbon form of this material and evaluate its shape memory behaviour. We found that annealing at 1050°C for 60 min, under a protective argon atmosphere, followed by a water quenching stabilizes the austenite to room temperature. The yield stress, measured by tensile tests, is 250 MPa. Shape-memory tests show that a strain recovery of 55% can be obtained, which is enough for certain applications.


2009 ◽  
Vol 635 ◽  
pp. 75-80 ◽  
Author(s):  
Irina I. Kositsyna ◽  
V.A. Zavalishin

The methods of electron microscopy, resistometry and magnetometry are used to study ten (36-38)Co - (32-36)Ni - (27-30)Al (at. %) alloys. Cast coarse-crystalline and microcrystalline alloys made by melt spinning in a helium atmosphere are considered. It is shown that the martensite start temperature Ms becomes 30-50°C lower as grains are refined to 1 m m. Replacement of 1 at. % cobalt by nickel and 1 at. % aluminum by nickel makes the temperature interval of the В2«L10 martensite transformation (30-60)°C and (100-110)°C higher respectively. The martensite transformation hysteresis is about 100 degrees. The melt-spun Co38Ni34Al28 alloy with the transformation temperatures Мs = 31°С, Мf = –34°С, Аs = –6°С, Аf = 70°С and Тс = 98°С is a material possessing the magnetically controlled shape memory effect.


2014 ◽  
Vol 07 (05) ◽  
pp. 1450063 ◽  
Author(s):  
Riccardo Casati ◽  
Carlo Alberto Biffi ◽  
Maurizio Vedani ◽  
Ausonio Tuissi

In this research, the high performance shape memory effect (HP-SME) is experimented on a shape memory NiTi wire, with austenite finish temperature higher than room temperature. The HP-SME consists in the thermal cycling of stress induced martensite and it allows achieving mechanical work higher than that produced by conventional shape memory actuators based on the heating/cooling of detwinned martensite. The Nitinol wire was able to recover about 5.5% of deformation under a stress of 600 MPa and to withstand about 5000 cycles before failure. HP-SME path increased the operating temperature of the shape memory actuator wire. Functioning temperatures higher than 100°C was reached.


2015 ◽  
Vol 661 ◽  
pp. 98-104 ◽  
Author(s):  
Kuang-Jau Fann ◽  
Pao Min Huang

Because of being in possession of shape memory effect and superelasticity, Ni-Ti shape memory alloys have earned more intense gaze on the next generation applications. Conventionally, Ni-Ti shape memory alloys are manufactured by hot forming and constraint aging, which need a capital-intensive investment. To have a cost benefit getting rid of plenty of die sets, this study is aimed to form Ni-Ti shape memory alloys at room temperature and to age them at elevated temperature without any die sets. In this study, starting with solution treatments at various temperatures, which served as annealing process, Ni-rich Ni-Ti shape memory alloy wires were bent by V-shaped punches in different curvatures at room temperature. Subsequently, the wires were aged at different temperatures to have shape memory effect. As a result, springback was found after withdrawing the bending punch and further after the aging treatment as well. A higher solution treatment temperature or a smaller bending radius leads to a smaller springback, while a higher aging treatment temperature made a larger springback. This springback may be compensated by bending the wires in further larger curvatures to keep the shape accuracy as designed. To explore the shape memory effect, a reverse bending test was performed. It shows that all bent wires after aging had a shape recovery rate above 96.3% on average.


2004 ◽  
Vol 449-452 ◽  
pp. 1093-1096 ◽  
Author(s):  
Tae Hyun Nam ◽  
Jae Hwa Lee ◽  
Tae Yeon Kim ◽  
Yeon Wook Kim

Transformation behaviors and shape memory characteristics of Ti-45Ni-5Cu alloy ribbons fabricated by melt spinning were investigated by means of optical microscopy, differential scanning calorimetries(DSC), X-ray diffraction and thermal cycling tests under constant load. They depended largely on temperatures of liquid metal. The B2-B19-B19’ two-step transformation occurred in the ribbons fabricated with the liquid whose temperature was higher than 1723 K, while the B2-B19’ one-step transformation occurred in the ribbons with the liquid at 1673 K. The stabilization of the B19 martensite in Ti-45Ni-5Cu alloy ribbons was ascribed to the high density of dislocations which made strong resistance to large lattice deformation associated with a formation of the B19’ martensite.


2009 ◽  
Vol 283-286 ◽  
pp. 139-148
Author(s):  
Devendra Gupta ◽  
David S. Lieberman

The Au-Cd alloys continue to be important vehicles of research for the shape memory effect involving martensitic transformations and related phenomena.They transform to a variety of martensitic structures depending on the alloy composition and thermal history. Additionally, the Au-rich alloys display rubber like behavior involving thermo-elastic memory. Defects and diffusion play important roles in determining these properties. Defects and diffusion mechanisms in the Au- 47.5 - 50.5 at.% Cd alloys are examined. Diffusion in the nanometer regime and the states of defects are found to be important contributing factors to determine the shape memory effect, the variable martensitic transformations and the rubber like behavior, which are discussed in details.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1599 ◽  
Author(s):  
Xiaoming Qi ◽  
Wentong Yang ◽  
Laiming Yu ◽  
Wenjun Wang ◽  
Haohao Lu ◽  
...  

One-dimensional shape memory polymer fibers (SMPFs) have obvious advantages in mechanical properties, dispersion properties, and weavability. In this work, a method for fabricating semi-crystallization ethylene-vinyl acetate copolymer (EVA) fiber with two-way shape memory effect by melt spinning and ultraviolet (UV) curing was developed. Here, the effect of crosslink density on its performance was systematically analyzed by gel fraction measurement, tensile tests, DSC, and TMA analysis. The results showed that the crosslink density and shape memory properties of EVA fiber could be facilely adjusted by controlling UV curing time. The resulting EVA fiber with cylindrical structure had a diameter of 261.86 ± 13.07 μm, and its mechanical strength and elongation at break were 64.46 MPa and 114.33%, respectively. The critical impact of the crosslink density and applied constant stress on the two-way shape memory effect were analyzed. Moreover, the single EVA fiber could lift more than 143 times its own weight and achieve 9% reversible actuation strain. The reversible actuation capability was significantly enhanced by a simple winding design of the single EVA fiber, which provided great potential applications in smart textiles, flexible actuators, and artificial muscles.


Sign in / Sign up

Export Citation Format

Share Document