CW Nd:YAG Laser Deposition of CdS Thin Films

1992 ◽  
Vol 281 ◽  
Author(s):  
X. W. Wang ◽  
D. J. Finnigan ◽  
R. Noble ◽  
P. Mattocks

ABSTRACTThere are two phases of CdS, wurtzite (hexagonal) and zincblende (cubic). To the best of our knowledge there is no report on the growth of large single crystal cubic CdS. Although there have been reports on the vapor deposition of cubic dominated CdS thin films, physical measurements were limited. Substrate material has been considered as the primary factor in attaining the cubic dominated CdS thin films. We report new results on CW Nd:YAG laser deposition of CdS thin films at various temperatures. X-ray diffraction patterns show that the films deposited at 200°C have a dominant cubic phase, those at 400°C being hexagonal. Optical transmission measurements reveal room temperature absorption edges of 515nm and 500nm for films deposited at 200°C and 400°C, respectively. Transmission electron microscopy further reveals differences in crystal structure of the two films. Raman spectra of the cubic film is similar to that of the hexagonal film.

2009 ◽  
Vol 65 (6) ◽  
pp. 694-698 ◽  
Author(s):  
Y. Han ◽  
I. M. Reaney ◽  
D. S. Tinberg ◽  
S. Trolier-McKinstry

SrRuO3 (SRO) thin films grown on (001)p (p = pseudocubic) oriented LaAlO3 (LAO) by pulsed laser deposition have been characterized using transmission electron microscopy. Observations along the 〈100〉p directions suggests that although the SRO layer maintains a pseudocube-to-pseudocube orientation relationship with the underlying LAO substrate, it has a ferroelastic domain structure associated with a transformation on cooling to room temperature to an orthorhombic Pbnm phase (a − a − c + Glazer tilt system). In addition, extra diffraction spots located at ±1/6(ooo)p and ±1/3(ooo)p (where `o' indicates an index with an odd number) positions were obtained in 〈110〉p zone-axis diffraction patterns. These were attributed to the existence of high-density twins on {111}p pseudocubic planes within the SrRuO3 films rather than to more conventional mechanisms for the generation of superstructure reflections.


2000 ◽  
Vol 617 ◽  
Author(s):  
Hiroharu Kawasaki ◽  
Kazuya Doi. Jun Namba ◽  
Yoshiaki Suda

AbstractTantalum nitride (TAN) films have been deposited on silicon substrates by using a pulsed Nd:YAG laser deposition method. Experimental results suggest that the substrate temperature is one of the most important parameters to prepare crystalline tantalum nitride thin films. Glancing-angle X-ray diffraction patterns show that the films deposited at Ts ≤ 300 °C are almost amorphous. and crystalline Ta6N2.57 films are obtained at Ts ≥ 500 °C. Grain size of the film increases with increasing substrate temperature.


2000 ◽  
Vol 617 ◽  
Author(s):  
Kazuya Doi ◽  
Satoshi Hiraishi ◽  
Hiroharu Kawasaki ◽  
Yoshiaki Suda

AbstractChromium carbide thin films are synthesized on Si(100) substrates by a pulsed Nd:YAG laser deposition (PLD) method as parameters of methane gas pressure. Glancing-angle X-ray diffraction patterns show that the film prepared by PLD method is a polycrystalline thin film composed of Cr3C2and Cr7C3, even in the base pressure. Diffraction patterns, however, are depended on the methane gas pressure. Grain size of the prepared film increases with increasing methane gas pressure. One of the reasons of these phenomena may be considered to the phase reaction between the ablated species, such as Cr, CrCx and CH4gas in the plasma plume.


1999 ◽  
Vol 14 (11) ◽  
pp. 4385-4394 ◽  
Author(s):  
N. D. Zakharov ◽  
K. M. Satyalakshmi ◽  
G. Koren ◽  
D. Hesse

The resistivity of SrRuO3 thin films on (001) SrTiO3 substrates grown at different temperatures by pulsed laser deposition is correlated to the microstructure. Films grown at 775 °C are of an orthorhombic structure, contain very few defects, and exhibit a low resistivity of 150 μΩ cm. Films grown at other temperatures contain a cubic phase and show higher resistivities. The defects present in the films, particularly twins and antiphase boundaries, are analyzed by high-resolution transmission electron microscopy, and their origin, as well as influence on film resistivity, is discussed.


1992 ◽  
Vol 218 (1-2) ◽  
pp. 157-160 ◽  
Author(s):  
X.W Wang ◽  
F Spitulnik ◽  
B Campell ◽  
R Noble ◽  
R.P Hapanowicz ◽  
...  

1995 ◽  
Vol 395 ◽  
Author(s):  
R.D. Vispute ◽  
H. Wu ◽  
K. Jagannadham ◽  
J. Narayan

ABSTRACTAIN thin films have been grown epitaxially on Si(111) and Al2O3(0001) substrates by pulsed laser deposition. These films were characterized by FTIR and UV-Visible, x-ray diffraction, high resolution transmission electron and scanning electron microscopy, and electrical resistivity. The films deposited on silicon and sapphire at 750-800°C and laser energy density of ∼ 2 to 3J/cm2 are epitaxial with an orientational relationship of AIN[0001]║ Si[111], AIN[2 110]║Si[011] and AlN[0001]║Al2O3[0001], AIN[1 2 1 0]║ Al2O3[0110] and AIN[1010] ║ Al2O3[2110]. The both AIN/Si and AIN/Al2O3 interfaces were found to be quite sharp without any indication of interfacial reactions. The absorption edge measured by UV-Visible spectroscopy for the epitaxial AIN film grown on sapphire was sharp and the band gap was found to be 6.1eV. The electrical resistivity of the films was about 5-6×l013Ω-cm with a breakdown field of 5×106V/cm. We also found that the films deposited at higher laser energy densities ≥10J/cm2 and lower temperatures ≤650°C were nitrogen deficient and containing free metallic aluminum which degrade the microstructural, electrical and optical properties of the AIN films


1993 ◽  
Vol 329 ◽  
Author(s):  
Wen P. Shen ◽  
Hoi S. Kwok

AbstractCdS thin films with doping concentration as high as 1017 cm-3 for p-type or 1021 cm-3 for n-type were achieved by pulsed excimer laser deposition without any post-annealing process. These films were grown on InP or GaAs substrates with good crystalline quality. By using this technique, CdS thin film p-n junctions were produced successfully.


2021 ◽  
Vol 19 (10) ◽  
pp. 34-40
Author(s):  
B.Y. Taher ◽  
A.S. Ahmed ◽  
Hassan J. Alatta

In this study, CdO2 (1-X) AlX thin films were prepared by pulsed-laser deposition. The X-ray diffraction patterns reveal that the films were polycrystalline with a cubic structure, and the composition of the material changed from CdO at the target to CdO2 in the deposited thin films. The intensity of the diffraction peak (or the texture factor) decreases with increasing hkl and has a maximum value for the (111) plane, the interplanar distance and diffraction angle has a high deviation from the standard value for the (111) plane and. This deviation is affected by doping concentration and shows its highest deviation at a doping concentration of 0.1 wt.% for the (111) and (200), and the 0.3 and 0.5 wt.% for the (210) and (220) planes, respectively. The crystalline size take a less value at plane has a high texture factor that is (111) plane and decreases with increase the doping concentration.


2006 ◽  
Vol 252 (10) ◽  
pp. 3783-3788 ◽  
Author(s):  
T. García ◽  
E. de Posada ◽  
P. Bartolo-Pérez ◽  
J.L. Peña ◽  
R. Diamant ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document