Explosion of Drops Impacting Non-Wetting Rigid Surfaces

1992 ◽  
Vol 296 ◽  
Author(s):  
Clarence Zener ◽  
Dennis Prieve

More than 100 years ago Worthington [1,2] reported his observations on drops exploding on impacting rigid surfaces they did not wet. Mercury was his favorite fluid, since mercury does not wet most solids. For water drops he had to especially “smoke” his surfaces to make them non-wetting. In his day high speed photography had not been developed, but he had learned to “stop” his falling drops by spark illumination. His drops had radii of typically 1 mm, fell from a height of ∼10 cm and ejected always an even number of spikes, typically ∼24. These spikes would shoot out from the impacted area at velocities several times higher than the impact velocity.

1996 ◽  
Vol 306 ◽  
pp. 145-165 ◽  
Author(s):  
Martin Rein

A drop that falls into a deep liquid can either coalesce with the receiving liquid and form a vortex ring or splash. Which phenomenon actually occurs depends on the impact conditions. When the impact conditions are gradually changed the transition between coalescence and splashing proceeds via a number of intermediate steps. These are studied by means of high-speed photography of the normal impact of water drops on a plane water surface. The characteristics of different flows that appear in the transitional regime and possible mechanisms causing these flows are discussed in detail. The phenomena considered include the rise of thick jets and the ejection of high-rising thin jets out of the impact crater, the entrainment of gas bubbles, crater dynamics, crown formation and the generation of splash droplets. Finally, a classification of the phenomena characteristic of the transitional regime is given.


1998 ◽  
Vol 361 ◽  
pp. 75-116 ◽  
Author(s):  
A. PHILIPP ◽  
W. LAUTERBORN

In order to elucidate the mechanism of cavitation erosion, the dynamics of a single laser-generated cavitation bubble in water and the resulting surface damage on a flat metal specimen are investigated in detail. The characteristic effects of bubble dynamics, in particular the formation of a high-speed liquid jet and the emission of shock waves at the moment of collapse are recorded with high-speed photography with framing rates of up to one million frames/s. Damage is observed when the bubble is generated at a distance less than twice its maximum radius from a solid boundary (γ=2, where γ=s/Rmax, s is the distance between the boundary and the bubble centre at the moment of formation and Rmax is the maximum bubble radius). The impact of the jet contributes to the damage only at small initial distances (γ[les ]0.7). In this region, the impact velocity rises to 83 m s−1, corresponding to a water hammer pressure of about 0.1 GPa, whereas at γ>1, the impact velocity is smaller than 25 m s−1. The largest erosive force is caused by the collapse of a bubble in direct contact with the boundary, where pressures of up to several GPa act on the material surface. Therefore, it is essential for the damaging effect that bubbles are accelerated towards the boundary during the collapse phases due to Bjerknes forces. The bubble touches the boundary at the moment of second collapse when γ<2 and at the moment of first collapse when γ<1. Indentations on an aluminium specimen are found at the contact locations of the collapsing bubble. In the range γ=1.7 to 2, where the bubble collapses mainly down to a single point, one pit below the bubble centre is observed. At γ[les ]1.7, the bubble shape has become toroidal, induced by the jet flow through the bubble centre. Corresponding to the decay of this bubble torus into multiple tiny bubbles each collapsing separately along the circumference of the torus, the observed damage is circular as well. Bubbles in the ranges γ[les ]0.3 and γ=1.2 to 1.4 caused the greatest damage. The overall diameter of the damaged area is found to scale with the maximum bubble radius. Owing to the possibility of generating thousands of nearly identical bubbles, the cavitation resistance of even hard steel specimens can be tested.


Soft Matter ◽  
2021 ◽  
Author(s):  
Siqi Zheng ◽  
Sam Dillavou ◽  
John M. Kolinski

When a soft elastic body impacts upon a smooth solid surface, the intervening air fails to drain, deforming the impactor. High-speed imaging with the VFT reveal rich dynamics and sensitivity to the impactor's elastic properties and the impact velocity.


Author(s):  
Shuguang Yao ◽  
Zhixiang Li ◽  
Wen Ma ◽  
Ping Xu ◽  
Quanwei Che

Coupler rubber buffers are widely used in high-speed trains, to dissipate the impact energy between vehicles. The rubber buffer consists of two groups of rubbers, which are pre-compressed and then installed into the frame body. This paper specifically focuses on the energy absorption characteristics of the rubber buffers. Firstly, quasi-static compression tests were carried out for one and three pairs of rubber sheets, and the relationship between the energy absorption responses, i.e. Eabn  =  n ×  Eab1, Edissn =  n ×  Ediss1, and Ean =  Ea1, was obtained. Next, a series of quasi-static tests were performed for one pair of rubber sheet to investigate the energy absorption performance with different compression ratios of the rubber buffers. Then, impact tests with five impact velocities were conducted, and the coupler knuckle was destroyed when the impact velocity was 10.807 km/h. The results of the impact tests showed that with the increase of the impact velocity, the Eab, Ediss, and Ea of the rear buffer increased significantly, but the three responses of the front buffer did not increase much. Finally, the results of the impact tests and quasi-static tests were contrastively analyzed, which showed that with the increase of the stroke, the values of Eab, Ediss, and Ea increased. However, the increasing rates of the impact tests were higher than that of the quasi-static tests. The maximum value of Ea was 68.76% in the impact tests, which was relatively a high value for the vehicle coupler buffer. The energy capacity of the rear buffer for dynamic loading was determined as 22.98 kJ.


2019 ◽  
Vol 35 (6) ◽  
pp. 911-924 ◽  
Author(s):  
Yue Jiang ◽  
Hong Li ◽  
Chao Chen ◽  
Lin Hua ◽  
Daming Zhang

HighlightsThe hydraulic performance of the impact sprinkler with circular and non-circular nozzles were measured.A High-Speed Photography (HSP) technique was employed to extract the jet breakup process of the impact sprinkler.Two index equations of jet characteristic lengths and equivalent diameters of non-circular nozzles were fitted. Abstract. An experiment was carried out to investigate the hydraulic performance of an impact sprinkler by using circular and non-circular nozzles. A High-Speed Photography (HSP) technique was employed to extract the breakup process and flow behavior of low-intermediate pressure water jets issued from the different types of orifices. These orifices were selected by the principle of equal flowrate with the same pressure. Moreover, two characteristic lengths: the jet breakup length and the initial amplitude of surface wave were measured. It was found that the sprinkler with circular nozzles produced the largest radius of throw followed by square nozzles and regular triangular nozzles when the cone angle of nozzle and pressure were unchanged, while the sprinkler with regular triangular nozzle had the best variation trend of water distribution and combination uniformity coefficient. Regular triangular jets exhibited a higher degree in breakup and the shortest breakup length compared with the square jets and the circular jets. The initial amplitudes of surface waves of regular triangular jets were larger than the square jets and the circular jets with the same cone angle. Two index equations of jet characteristic lengths and equivalent diameters of both circular and non-circular orifices were fitted with a relative error of less than 10%, which means the fitting formulas were accurate. Keywords: Breakup length, Fitting formula, Hydraulic performance, Initial amplitude, Non-circular jets.


Author(s):  
N. K. Bourne ◽  
S. Parry ◽  
D. Townsend ◽  
P. J. Withers ◽  
C. Soutis ◽  
...  

The Taylor test is used to determine damage evolution in carbon-fibre composites across a range of strain rates. The hierarchy of damage across the scales is key in determining the suite of operating mechanisms and high-speed diagnostics are used to determine states during dynamic loading. Experiments record the test response as a function of the orientation of the cylinder cut from the engineered multi-ply composite with high-speed photography and post-mortem target examination. The ensuing damage occurs during the shock compression phase but three other tensile loading modes operate during the test and these are explored. Experiment has shown that ply orientations respond to two components of release; longitudinal and radial as well as the hoop stresses generated in inelastic flow at the impact surface. The test is a discriminant not only of damage thresholds but of local failure modes and their kinetics. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’.


The type of stress pulse produced when a liquid mass strikes a solid at high velocity is first examined. Compressible behaviour, giving rise to a sharp peak of pressure, is found to occur in the initial stages of the impact. The duration of this peak depends on the dimensions and impact velocity of the liquid mass, and also on the compressible wave velocity for the liquid. A comparison is made with pulses produced by solid/solid impact and by the detonation of small quantities of explosive. Both the high-speed liquid impact and the explosive loading give intense pulses of duration only a few microseconds. A solid/solid impact has, by comparison, a much longer impact time of the order of hundreds of microseconds. The fracture of glasses and hard polymers using these three types of loading is described. The development of fracture is followed by high-speed photography. Differences in the modes of fracture are attributed to variations in the shape and duration of the applied stress pulses. Short circumferential fractures produced around the loaded area in liquid impact and explosive loading are shown to be initiated by the Rayleigh surface wave at points where flaws existed. More complex fracture patterns on the front surfaces of plates are due to the reinforcement of the surface wave with components of stress waves reflected from the back surface. A combination of impact loading and etching makes it possible to investigate the distribution and depths of flaws, their role in the fracture process, and the effect which etching has upon them. The observation on the deformation produced in solids by liquid impact has practical significance in the problem of supersonic aircraft flying through rain and in the erosion of turbine blades moving at high velocity through wet steam.


2017 ◽  
Vol 11 (1) ◽  
Author(s):  
Prachya Mukda ◽  
Kulachate Pianthong ◽  
Wirapan Seehanam

Currently, most of commercial needle-free jet injectors generate the liquid jet by a method called “driving object method” (DOM); however, the reliability and efficiency are still questioned. This paper proposes a new concept of jet generation method, known as “impact driven method” (IDM). A prototype of an IDM jet injector is designed, built, tested, and compared to a commercial device (Cool.click, Tigard, OR). Fundamental characteristics, i.e., the exit jet velocity and impact pressure, are measured. Jet injection processes are visualized both in air and in 20% polyacrylamide by high speed photography. In this study, from the prototype of the IDM jet injector, a maximum jet velocity of 400 m/s and impact peak pressure of 68 MPa can be obtained. It is clear that the IDM jet injector provides a double pulsed liquid jet, which is a major advantage over the commercial jet injector. Because, the first pulse gives a shorter erosion stage, and then, immediately the second pulse follows and provides a better penetration, wider lateral dispersion, and considerably less back splash. Hence, lower pain level and higher delivery efficiency should be achieved. It can be concluded that the IDM concept is highly feasible for implementation in real applications, either for human or animal injection. However, the control and accuracy of IDM still needs to be carefully investigated.


1983 ◽  
Vol 105 (1) ◽  
pp. 67-73 ◽  
Author(s):  
Yoichi Tatara

Previously, it has been verified experimentally for durations of impact that the Hertz theory (the quasi-statical theory) holds during impact of spheres without any exception. However, no measurement of duration of impact has been presented for spheres of materials other than metal. This study presents exceptional cases of impacts of spheres during which the Hertz model does not directly hold. By the use of a high-speed camera running at a speed of 5000 frames/s, durations of impact are measured directly for impacts of two solid rubber spheres of the same size and content and impacts of a soft ball (Japanese type-soft tennis ball) on a rigid foundation. As a result, the measured durations of impact in the two impacting cases are found to be decreased as the impact velocity is increased, similar in tendency to durations of impact of elastic metal spheres during which the Hertz theory holds. However, the measured durations of impact are found to be clearly shorter than results calculated according to the Hertz theory, approximately half in the former impacts at high impact velocities, and about 70 percent of the Hertzian results in the latter impacts at almost all impact velocities. Deformation process of the ball impacting on the foundation is also presented to indicate both durations in the compressive process and the restitution one to be shorter than those expected by the Hertz theory. The other results observed on the films are noted to investigate the origin of the great discrepancies between the measured and Hertzian durations (that is, the impacting mechanism of the rubber spheres or the rubber ball packed with air treated here).


2012 ◽  
Vol 538-541 ◽  
pp. 1447-1450 ◽  
Author(s):  
Shu Yuan Jiang ◽  
Xiao Wei Wang ◽  
Huan Ming Chen ◽  
Pin Liu

Aiming at the welding arc can act with the magnetic field, has electrical quasi-neutral and electrical conductivity. This paper introduced an adscititious longitudinal magnetic field to control the CO2 welding process and used the Hanover Welding Quality Analyzer to acquire the real-time welding signal. Meanwhile, the short circuit behavior of CO2 welding under the adscititious longitudinal magnetic field, was monitored with the High-speed Photography System. The results show that when the excitation current in an optimal range, the welding current decay and the frequency of short circuit transition is uniform and faster, smaller droplet size and the welding process is more stability than welding without adscititious magnetic field.


Sign in / Sign up

Export Citation Format

Share Document