Characterization of Ge and C Implanted Sil-xGex and Sil-y-zGeyCz Layers

1993 ◽  
Vol 298 ◽  
Author(s):  
Ashawant Gupta ◽  
Yao-Wu Cheng ◽  
Jianmin Qiao ◽  
M. Mahmudur Rahman ◽  
Cary Y. Yang ◽  
...  

AbstractIn an attempt to substantiate our previous findings of boron deactivation and/or donor complex formation due to high-dose Ge and C implantation, SiGe and SiGeC layers were fabricated and characterized. Cross-sectional transmission electron microscopy indicated that the SiGe layer with peak Ge concentration of 5 at% was strained; whereas, for higher concentrations, stacking faults were observed from the surface to the projected range of Ge as a result of strain relaxation. Results of spreading resistance profiling were found to be consistent with the model of dopant deactivation due to Ge implantation and subsequent solid phase epitaxial growth of the amorphous layer. Furthermore, for unstrained SiGe layers (Ge peak concentration ≥7 at%), formation of donor complexes is indicated. Preliminary photoluminescence results correlate with the spreading resistance profiling results and indicate shallow donor complex formation.

1995 ◽  
Vol 402 ◽  
Author(s):  
G. Curello ◽  
R. Gwilliam ◽  
M. Harry ◽  
R. J. Wilson ◽  
B. J. Sealy ◽  
...  

AbstractIn this work iridium silicidation of high dose Ge+ implanted Si layers has been studied. Compositional graded SiGe layers with a Ge peak concentration between 6 at.% and 12 at.% have been fabricated using 200 keV Ge+ ion implantation into (100) Si. A 20 nm thick Ir film was then deposited by e-beam evaporation with thermal reaction being performed to both regrow the implantation damage and form the silicide. The crystal quality of the SiGe layer and its interaction with the Ir film have been studied by cross-sectional Transmission Electron Microscopy (XTEM) and Rutherford Backscattering Spectrometry (RBS).Solid Phase Epitaxial Growth (SPEG) in the low dose case has produced a defect free SiGe layer with the formation of the IrSi phase. The annealing ambient was found to be critical for the silicidation. For the high dose case, as expected, strain relaxation related defects were observed to nucleate at a depth close to the projected range of the Ge+ implant and to extend up to the surface. A second rapid thermal annealing at higher temperatures, performed in forming gas, consumed most of the defective layer moving the silicide interface closer to the peak of the Ge distribution. A second low dose Ge+ implant following the metal deposition has been found to have a beneficial effect on the quality of the final interface. An amorphizing 500 keV Si+ implant followed by SPEG has finally been used to move the end of range defects far from the interface.


2000 ◽  
Vol 647 ◽  
Author(s):  
J. Rodriguez-Viejo ◽  
Zakia el-Felk

AbstractThe strain and damage produced on Si substrates by high-dose ion implantation of Si and C is investigated after thermal treatments by double and triple crystal X-ray diffraction, high ressolution transmission electron microscopy (HRTEM) and Secondary Ion Mass Spectrometry (SIMS). Si implantation (180 keV, 5×1015 Si at cm−2) at liquid nitrogen temperature forms a buried amorphous layer. Annealing at temperatures close to 650°C results in epitaxial films with significant defect recovery. X-ray rocking curves show the existence of interference fringes on the left hand side of the 004 Si peak indicating the presence of tensile strained Si layers due to the generation of Si interstitials during the implantation process. C implantation, at 60 keV, 7×1015 cm−2 and 450°C, in the preamorphized Si wafers results in the growth of Si1-yCy epitaxial films with a low amount of substitutional carbon (y≍ 0.1%). Rapid thermal annealing at 750°C results in highly defective epitaxial films with a maximum carbon content close to 0.4%.The high density of defects is responsible for the partial strain relaxation observed in those layers. The amount of substitutional Si also decreases drastically with increasing temperature. Profile fitting of rocking curves using dynamical X-ray theory is used to estimate the C concentration and the strain and disorder profiles of the heterostructures.


2004 ◽  
Vol 810 ◽  
Author(s):  
Nina Burbure ◽  
Kevin S. Jones

ABSTRACTPattern induced defects during advanced CMOS processing can lead to lower quality devices with high leakage currents. Within this study, the effects of oxide trenches on implant related defect formation and evolution in silicon patterned wafers is examined. Oxide filled trenches approximately 4000Å deep were patterned into 300 mm <100> silicon wafers. Patterning was followed by ion implantation of Si+ at energies ranging from 10 to 80 keV. Samples were amorphized with doses of 1×1015 atoms/cm2, 5×1015 atoms/cm2, and 1×1016 atoms/cm2. Two independent repeating structures were studied. The first structure is comprised of silicon oxide filled trench lines, 3.7μm wide spaced 12.5μm apart, while the second structure contains silicon squares, 0.6μm on a side, surrounded by a silicon oxide filled trench. Cross- sectional and planar view transmission electron microscopy (TEM) samples were used to examine the defect morphology after annealing at temperatures ranging from 700°C to 950°C and at times between 1 second and 1 minute. Following complete regrowth, an array of defects was observed to form near the surface at the silicon/silicon oxide interface. These trench edge defects appeared to nucleate at the amorphous-crystalline interface for all energies and doses studied. Upon a spike anneal at 700°C, it was observed that regrowth of the amorphous layer had completed except in the region near the trench edge. Thus, it is believed that this defect results from the pinning of the amorphous-crystalline interface along the trench edge during solid phase epitaxial regrowth (SPER).


1995 ◽  
Vol 388 ◽  
Author(s):  
Xiang Lu ◽  
Nathan W. Cheung

AbstractSi1-x-yGexCy/Si heterostuctures were formed on Si (100) surface by Ge and C implantation with a high dose rate MEtal - Vapor Vacuum arc (MEVVA) ion source and subsequent Solid Phase Epitaxy (SPE). after thermal annealing in the temperature range from 600 °C to 1200 °C, the implanted layer was studied using Rutherford Back-scattering Spectrometry (RBS), cross-sectional High Resolution Transmission Electron Microscopy (HRTEM) and fourbounce X-ray Diffraction (XRD) measurement. Due to the small lattice constant and wide bandgap of SiC, the incorporation of C into Si-Ge can provide a complementary material to Si-Ge for bandgap engineering of Si-based heterojunction structure. Polycrystals are formed at temperature at and below 1000 °C thermal growth, while single crystal epitaxial layer is formed at 1100 °C and beyond. XRD measurements near Si (004) peak confirm the compensation of the Si1-x Gex lattice mismatch strain by substitutional C. C implantation is also found to suppress the End of Range (EOR) defect growth.


2006 ◽  
Vol 957 ◽  
Author(s):  
Rajendra Singh ◽  
R. Scholz ◽  
U. Gösele ◽  
S. H. Christiansen

ABSTRACTZnO(0001) bulk crystals were implanted with 100 keV H2+ ions with various doses in the range of 5×1016 to 3×1017 cm-2. The ZnO crystals implanted up to a dose of 2.2×1017 cm-2 did not show any surface exfoliation, even after post-implantation annealing at temperatures up to 800°C for 1 h while those crystals implanted with a dose of 2.8×1017 cm-2 or higher exhibited exfoliated surfaces already in the as-implanted state. In a narrow dose window in between, controlled exfoliation could be obtained upon post-implantation annealing only. Cross-sectional transmission electron microscopy (XTEM) of the implanted ZnO samples showed that a large number of nanovoids were formed within the implantation-induced damage band. These nanovoids served as precursors for the formation of microcracks leading to the exfoliation of ZnO wafer surfaces. In addition to the nanovoids, elongated nanocolumns perpendicular to the ZnO wafer surfaces were also observed. These nanocolumns showed diameters of up to 10 nm and lengths of up to 500 nm. The nanocolumns were found in the ZnO wafer even well beyond the projected range of hydrogen ions.


1985 ◽  
Vol 46 ◽  
Author(s):  
D. K. Sadana ◽  
J. M. Zavada ◽  
H. A. Jenkinson ◽  
T. Sands

AbstractHigh resolution transmission electron microscopy (HRTEM) has been performed on cross-sectional specimens from high dose (1016 cm−2) H+ implanted (100) GaAs (300 keV at room temperature). It was found that annealing at 500°C created small (20-50Å) loops on {111} near the projected range (Rp)(3.2 μm). At 550-600°C, voids surrounded by stacking faults, microtwins and perfect dislocations were observed near the Rp. A phenomenological model explaining the observed results is proposed.


2004 ◽  
Vol 810 ◽  
Author(s):  
J.M. Jacques ◽  
N. Burbure ◽  
K.S. Jones ◽  
M.E. Law ◽  
L.S. Robertson ◽  
...  

ABSTRACTIn prior works, we demonstrated the phenomenon of fluorine-enhanced boron diffusion within self-amorphized silicon. Present studies address the process dependencies of low temperature boron motion within ion implanted materials utilizing a germanium amorphization. Silicon wafers were preamorphized with either 60 keV or 80 keV Ge+ at a dose of 1×1015 atoms/cm2. Subsequent 500 eV, 1×1015 atoms/cm211B+ implants, as well as 6 keV F+ implants with doses ranging from 1×1014 atoms/cm2 to 5×1015 atoms/cm2 were also done. Furnace anneals were conducted at 550°C for 10 minutes under an inert N2 ambient. Secondary Ion Mass Spectroscopy (SIMS) was utilized to characterize the occurrence of boron diffusion within amorphous silicon at room temperature, as well as during the Solid Phase Epitaxial Regrowth (SPER) process. Amorphous layer depths were verified through Cross-Sectional Transmission Electron Microscopy (XTEM) and Variable Angle Spectroscopic Ellipsometry (VASE). Boron motion within as-implanted samples is observed at fluorine concentrations greater than 1×1020 atoms/cm3. The magnitude of the boron motion scales with increasing fluorine dose and concentration. During the initial stages of SPER, boron was observed to diffuse irrespective of the co-implanted fluorine dose. Fluorine enhanced diffusion at room temperature does not appear to follow the same process as the enhanced diffusion observed during the regrowth process.


1990 ◽  
Vol 187 ◽  
Author(s):  
D. J. Howard ◽  
D. C. Paine ◽  
N. G. Stoffel

AbstractIn this paper we propose a new method for the synthesis of Si1−xGex strained-layer alloys using high-dose ion implantation of 74Ge at 200 keV into a preamorphized <001> Si wafer followed by solid phase epitaxy (SPE). Cross-sectional TEM was performed on samples at various stages of regrowth which revealed the evolution of the amorphous/crystalline interface and the development of strain relieving defects during SPE. We report that stacking faults are kinetically favored during SPE of Si1−xGex but are energetically feasible only above a critical strain energy. We propose a model that is based on the well known Matthews and Blakeslee approach which predicts the onset of stacking faults during SPE of high-dose ion implant-synthesized Si1−xGex/Si.


2004 ◽  
Vol 810 ◽  
Author(s):  
R. T. Crosby ◽  
K. S. Jones ◽  
M. E. Law ◽  
A. F. Saavedra ◽  
J. L. Hansen ◽  
...  

ABSTRACTThe relaxation processes of strained silicon films on silicon-rich relaxed SiGe alloys have been studied. Experimental structures were generated via Molecular Beam Epitaxial (MBE) growth techniques and contain a strained silicon capping layer of approximately 50 nm. The relaxed SiGe alloy compositions range from 0 to 30 atomic% germanium. Samples received two distinct types of silicon implants. A 12 keV Si+ implant at a dose of 1×1015 atoms/cm2 was used to generate an amorphous layer strictly confined within the strained Si cap. An alternate 60 keV Si+ implant at a dose of 1×1015 atoms/cm2 was employed to create a continuous amorphous layer extending from the sample surface to a position 50 nm into the bulk SiGe material. The strain relaxation and regrowth processes are quantified through High Resolution X-Ray Diffraction (HRXRD) rocking curves and Cross-sectional Transmission Electron Microscopy (XTEM). The role of injected silicon interstitials upon the strain relaxation processes at the Si/SiGe interface after annealing at 600°C is investigated.


1989 ◽  
Vol 147 ◽  
Author(s):  
G. Ottaviani ◽  
F. Nava ◽  
R. Tonini ◽  
S. Frabboni ◽  
G. F. Cerofolini ◽  
...  

AbstractWe have performed a systematic investigation of boron implantation at 30 keV into <100> n-type silicon in the 77 –300 K temperature range and mostly at 9×1015 cm−2 fluence. The analyses have been performed with ion channeling and cross sectional transmission electron microscopy both in as-implanted samples and in samples annealed in vacuum furnace at 500 °C and 850 °C for 30 min. We confirm the impossibility of amorphization at room temperature and the presence of residual damage mainly located at the boron projected range. On the contrary, a continuous amorphous layer can be obtained for implants at 77 K and 193 K; the thickness of the implanted layer is increased by lowering the temperature, at the same time the amorphous-crystalline interface becomes sharper. Sheet resistance measurements performed after isochronal annealing shows an apparent reverse annealing of the dopant only in the sample implanted at 273 K. The striking differences between light and heavy ions observed at room temperature implantation disappears at 77 K and full recovery with no residual damage of the amorphous layer is observed.


Sign in / Sign up

Export Citation Format

Share Document