Dynamical X-ray diffraction analysis of Solid Phase Epitaxy growth of Si1-yCy heterostructures

2000 ◽  
Vol 647 ◽  
Author(s):  
J. Rodriguez-Viejo ◽  
Zakia el-Felk

AbstractThe strain and damage produced on Si substrates by high-dose ion implantation of Si and C is investigated after thermal treatments by double and triple crystal X-ray diffraction, high ressolution transmission electron microscopy (HRTEM) and Secondary Ion Mass Spectrometry (SIMS). Si implantation (180 keV, 5×1015 Si at cm−2) at liquid nitrogen temperature forms a buried amorphous layer. Annealing at temperatures close to 650°C results in epitaxial films with significant defect recovery. X-ray rocking curves show the existence of interference fringes on the left hand side of the 004 Si peak indicating the presence of tensile strained Si layers due to the generation of Si interstitials during the implantation process. C implantation, at 60 keV, 7×1015 cm−2 and 450°C, in the preamorphized Si wafers results in the growth of Si1-yCy epitaxial films with a low amount of substitutional carbon (y≍ 0.1%). Rapid thermal annealing at 750°C results in highly defective epitaxial films with a maximum carbon content close to 0.4%.The high density of defects is responsible for the partial strain relaxation observed in those layers. The amount of substitutional Si also decreases drastically with increasing temperature. Profile fitting of rocking curves using dynamical X-ray theory is used to estimate the C concentration and the strain and disorder profiles of the heterostructures.

2005 ◽  
Vol 864 ◽  
Author(s):  
M.S. Phen ◽  
R. T. Crosby ◽  
V. Craciun ◽  
K. S. Jones ◽  
M.E. Law ◽  
...  

AbstractThe relaxation process of strained silicon films on silicon-rich relaxed SiGe alloys has been studied. Experimental structures were grown via Molecular Beam Epitaxy (MBE) growth techniques and contain a strained silicon capping layer approximately 50 nm thick. The relaxed SiGe alloy compositions range from 0 to 30 at.% germanium. A 12 keV Si+ implant at a dose of 1×1015 atoms/cm2 was used to generate an amorphous layer ∼30 nm thick, which was confined within the strained silicon capping layer. Upon annealing at 500 °C, it was found that the solid phase epitaxial regrowth process of the amorphous silicon breaks down for high strain levels and regrowth related defects were observed in the regrown layer. In addition, high-resolution X-Ray diffraction results indicate a reduction in strain for the silicon capping layer. This study addresses the critical strain regime necessary for the breakdown of solid phase epitaxial recrystallization in silicon.


2004 ◽  
Vol 19 (7) ◽  
pp. 2137-2143 ◽  
Author(s):  
Hidenori Hiramatsu ◽  
Kazushige Ueda ◽  
Kouhei Takafuji ◽  
Hiromichi Ohta ◽  
Masahiro Hirano ◽  
...  

Processes and preparation conditions for growing epitaxial thin films of Cu-based, layered oxychalcogenides LnCuOCh (Ln = La, Ce, Pr or Nd; Ch = S1-xSex or Se1-yTey) are reported. Epitaxial thin films on MgO (001) substrates were prepared by a reactive solid-phase epitaxy method. Four-axes high-resolution x-ray diffraction measurements revealed that the crystallographic orientation is (001)[110] LnCuOCh || (001)[110] MgO and the internal stress of the crystalline lattices in the films are relaxed during thermal-annealing process of the reactive solid-phase epitaxy. Furthermore, except for CeCuOS, systematic variations in the lattice constant by chalcogen or lanthanide ion substitutions were observed. These results demonstrated that the reactive solid-phase epitaxy is an efficient technique for fabricating LnCuOCh epitaxial films.


2004 ◽  
Vol 810 ◽  
Author(s):  
R. T. Crosby ◽  
K. S. Jones ◽  
M. E. Law ◽  
A. F. Saavedra ◽  
J. L. Hansen ◽  
...  

ABSTRACTThe relaxation processes of strained silicon films on silicon-rich relaxed SiGe alloys have been studied. Experimental structures were generated via Molecular Beam Epitaxial (MBE) growth techniques and contain a strained silicon capping layer of approximately 50 nm. The relaxed SiGe alloy compositions range from 0 to 30 atomic% germanium. Samples received two distinct types of silicon implants. A 12 keV Si+ implant at a dose of 1×1015 atoms/cm2 was used to generate an amorphous layer strictly confined within the strained Si cap. An alternate 60 keV Si+ implant at a dose of 1×1015 atoms/cm2 was employed to create a continuous amorphous layer extending from the sample surface to a position 50 nm into the bulk SiGe material. The strain relaxation and regrowth processes are quantified through High Resolution X-Ray Diffraction (HRXRD) rocking curves and Cross-sectional Transmission Electron Microscopy (XTEM). The role of injected silicon interstitials upon the strain relaxation processes at the Si/SiGe interface after annealing at 600°C is investigated.


1993 ◽  
Vol 298 ◽  
Author(s):  
Ashawant Gupta ◽  
Yao-Wu Cheng ◽  
Jianmin Qiao ◽  
M. Mahmudur Rahman ◽  
Cary Y. Yang ◽  
...  

AbstractIn an attempt to substantiate our previous findings of boron deactivation and/or donor complex formation due to high-dose Ge and C implantation, SiGe and SiGeC layers were fabricated and characterized. Cross-sectional transmission electron microscopy indicated that the SiGe layer with peak Ge concentration of 5 at% was strained; whereas, for higher concentrations, stacking faults were observed from the surface to the projected range of Ge as a result of strain relaxation. Results of spreading resistance profiling were found to be consistent with the model of dopant deactivation due to Ge implantation and subsequent solid phase epitaxial growth of the amorphous layer. Furthermore, for unstrained SiGe layers (Ge peak concentration ≥7 at%), formation of donor complexes is indicated. Preliminary photoluminescence results correlate with the spreading resistance profiling results and indicate shallow donor complex formation.


2011 ◽  
Vol 178-179 ◽  
pp. 416-420
Author(s):  
Jadwiga Bak-Misiuk ◽  
Andrzej Misiuk ◽  
Adam Barcz ◽  
Przemyslaw Romanowski

Solid phase epitaxial regrowth (SPER) of amorphized layer in Czochralski grown silicon (Cz-Si) created by self-implantation (Si+ dose 2x1016 cm-2, energy 150 keV), subsequently annealed for 5 h at up to 1400 K under Ar pressure up to 1.4 GPa, was investigated by Secondary Ion Mass Spectrometry (SIMS) and X-ray methods. Annealing of Cz-Si:Si resulted in pressure-dependent SPER with a marked carbon and oxygen gettering within regrown region. Depth profiling of carbon and oxygen contaminants provides useful information concerning SPER in implanted single crystalline silicon.


Polymer ◽  
2004 ◽  
Vol 45 (18) ◽  
pp. 6341-6348 ◽  
Author(s):  
S. Stoeva ◽  
A. Popov ◽  
R. Rodriguez

2006 ◽  
Vol 20 (25n27) ◽  
pp. 3999-4004
Author(s):  
HIROSHI MATSUI ◽  
KAZUFUMI WATANABE

Antimony-platinum bilayers were prepared on titanium substrates by the two-step electrodeposition in the usual baths, and then surface alloys were formed by the atom diffusion in the solid phase. The simple antimony layer was little influenced by the substrate in both the measurements of X-ray diffraction and the i - E characteristic in a sulfuric acid solution. Regarding the bilayers, the catalytic activity in hydrogen evolution reaction was very sensitive to the presence of platinum, while the hydrogen adsorbability was quite insensitive. An interaction between antimony and platinum was confirmed by the appearance of a new dissolution wave in the electrochemical measurement and the occurrence of a new diffraction in the X-ray diffraction pattern after the heat-treatment of about 400°C. Although the new diffraction disagreed with any of the reported alloys, clear diffraction pattern of PtSb 2 alloy was observed, when the bilayers were heat-treated at about 600°C for one hour. Considering the penetration depth of X-ray, the alloying of antimony and platinum seems to occur also at low temperatures at least at the top surface.


2014 ◽  
Vol 215 ◽  
pp. 470-473 ◽  
Author(s):  
Tamara V. Drokina ◽  
German A. Petrakovskii ◽  
Dmitrii A. Velikanov ◽  
Maksim S. Molokeev

In this paper we are reported about a peculiarity of the crystal structure and the magnetic state of TmFeTi2O7. The compound TmFeTi2O7 has been synthesizedusing the solid-phase reaction method. Using X-ray diffraction method the disorder in the distribution of the iron ions over five nonequivalent crystal sites was observed, also the populations of the iron atoms positions were determined. We show that below Tf = 6 K the magnetization of TmFeTi2O7 depends on the magnetic history of the sample. There are indications for spin glass state. This results allow us to assume the state of spin glass is realized below freezing temperature Tf = 6 K in TmFeTi2O7.


2000 ◽  
Vol 623 ◽  
Author(s):  
R. Kalare ◽  
M. Vedawyas ◽  
A. Kumar

AbstractAn electrode plays an important role in realising a ferroelectric thin film as a potential memory device. We have investigated LaNiO3 (LNO) as a potential electrode material and evaluated the ferroelectric properties of oxide materials like strontium bismuth tantalate (SBT) and barium titanate(BT). We have successfully deposited epitaxial films of LNO on Pt coated Si(100) and LaAlO3 (LAO) substrates using the pulsed excimer laser deposition technique. We are able to grow high quality SBT and BT films on top of this LNO layer. The X-ray diffraction revealed the epitaxy of the LNO, SBT and BT films. The ferroelectric properties of SBTand BT were investigated using the RT66A ferroelectric tester.


Sign in / Sign up

Export Citation Format

Share Document