Iridium Silicides Formation on High Doses Ge+ Implanted Si Layers

1995 ◽  
Vol 402 ◽  
Author(s):  
G. Curello ◽  
R. Gwilliam ◽  
M. Harry ◽  
R. J. Wilson ◽  
B. J. Sealy ◽  
...  

AbstractIn this work iridium silicidation of high dose Ge+ implanted Si layers has been studied. Compositional graded SiGe layers with a Ge peak concentration between 6 at.% and 12 at.% have been fabricated using 200 keV Ge+ ion implantation into (100) Si. A 20 nm thick Ir film was then deposited by e-beam evaporation with thermal reaction being performed to both regrow the implantation damage and form the silicide. The crystal quality of the SiGe layer and its interaction with the Ir film have been studied by cross-sectional Transmission Electron Microscopy (XTEM) and Rutherford Backscattering Spectrometry (RBS).Solid Phase Epitaxial Growth (SPEG) in the low dose case has produced a defect free SiGe layer with the formation of the IrSi phase. The annealing ambient was found to be critical for the silicidation. For the high dose case, as expected, strain relaxation related defects were observed to nucleate at a depth close to the projected range of the Ge+ implant and to extend up to the surface. A second rapid thermal annealing at higher temperatures, performed in forming gas, consumed most of the defective layer moving the silicide interface closer to the peak of the Ge distribution. A second low dose Ge+ implant following the metal deposition has been found to have a beneficial effect on the quality of the final interface. An amorphizing 500 keV Si+ implant followed by SPEG has finally been used to move the end of range defects far from the interface.

1993 ◽  
Vol 298 ◽  
Author(s):  
Ashawant Gupta ◽  
Yao-Wu Cheng ◽  
Jianmin Qiao ◽  
M. Mahmudur Rahman ◽  
Cary Y. Yang ◽  
...  

AbstractIn an attempt to substantiate our previous findings of boron deactivation and/or donor complex formation due to high-dose Ge and C implantation, SiGe and SiGeC layers were fabricated and characterized. Cross-sectional transmission electron microscopy indicated that the SiGe layer with peak Ge concentration of 5 at% was strained; whereas, for higher concentrations, stacking faults were observed from the surface to the projected range of Ge as a result of strain relaxation. Results of spreading resistance profiling were found to be consistent with the model of dopant deactivation due to Ge implantation and subsequent solid phase epitaxial growth of the amorphous layer. Furthermore, for unstrained SiGe layers (Ge peak concentration ≥7 at%), formation of donor complexes is indicated. Preliminary photoluminescence results correlate with the spreading resistance profiling results and indicate shallow donor complex formation.


1992 ◽  
Vol 279 ◽  
Author(s):  
Tim D. Hunt ◽  
Brian J. Sealy ◽  
Jochen Hanebeck ◽  
Karen J. Reeson ◽  
Kevin P. Homewood ◽  
...  

ABSTRACTDual implantation of cobalt and iron into silicon (100) wafers and subsequent annealing has been used to form layers containing mixtures of CoSi2 and FeSi2. The structure and properties of the layers were followed by Secondary Ion Mass Spectrometry (SIMS), cross-sectional transmission electron microscopy (XTEM), Transmission Electron Diffraction (TED), Rutherford Backscattering Spectroscopy (RBS), and photoluminescence (PL). When a high dose of both species was implanted, segregation of the cobalt and iron occurred which for 1000°C anneals, resulted in an epitaxial layer of αFeSi2 upon a CoSi2 layer. The epitaxial quality of both of these layers was superior to those previously fabricated by single species implants. For a low dose cobalt implant followed by a high dose iron implant, a single phase solid solution was formed and segregation did not occur. Photoluminescence at 1.54 urn was observed from this layer, but with a much lower intensity and a broader line width than that from a pure βFeSi2 layer.


Author(s):  
Michael Esser ◽  
Sabine Hess ◽  
Matthias Teufel ◽  
Mareen Kraus ◽  
Sven Schneeweiß ◽  
...  

Purpose To analyze possible influencing factors on radiation exposure in pediatric chest CT using different approaches for radiation dose optimization and to determine major indicators for dose development. Materials and Methods In this retrospective study at a clinic with maximum care facilities including pediatric radiology, 1695 chest CT examinations in 768 patients (median age: 10 years; range: 2 days to 17.9 years) were analyzed. Volume CT dose indices, effective dose, size-specific dose estimate, automatic dose modulation (AEC), and high-pitch protocols (pitch ≥ 3.0) were evaluated by univariate analysis. The image quality of low-dose examinations was compared to higher dose protocols by non-inferiority testing. Results Median dose-specific values annually decreased by an average of 12 %. High-pitch mode (n = 414) resulted in lower dose parameters (p < 0.001). In unenhanced CT, AEC delivered higher dose values compared to scans with fixed parameters (p < 0.001). In contrast-enhanced CT, the use of AEC yielded a significantly lower radiation dose only in patients older than 16 years (p = 0.04). In the age group 6 to 15 years, the values were higher (p < 0.001). The diagnostic image quality of low-dose scans was non-inferior to high-dose scans (2.18 vs. 2.14). Conclusion Radiation dose of chest CT was reduced without loss of image quality in the last decade. High-pitch scanning was an independent factor in this context. Dose reduction by AEC was limited and only relevant for patients over 16 years. Key Points Citation Format


1995 ◽  
Vol 388 ◽  
Author(s):  
Xiang Lu ◽  
Nathan W. Cheung

AbstractSi1-x-yGexCy/Si heterostuctures were formed on Si (100) surface by Ge and C implantation with a high dose rate MEtal - Vapor Vacuum arc (MEVVA) ion source and subsequent Solid Phase Epitaxy (SPE). after thermal annealing in the temperature range from 600 °C to 1200 °C, the implanted layer was studied using Rutherford Back-scattering Spectrometry (RBS), cross-sectional High Resolution Transmission Electron Microscopy (HRTEM) and fourbounce X-ray Diffraction (XRD) measurement. Due to the small lattice constant and wide bandgap of SiC, the incorporation of C into Si-Ge can provide a complementary material to Si-Ge for bandgap engineering of Si-based heterojunction structure. Polycrystals are formed at temperature at and below 1000 °C thermal growth, while single crystal epitaxial layer is formed at 1100 °C and beyond. XRD measurements near Si (004) peak confirm the compensation of the Si1-x Gex lattice mismatch strain by substitutional C. C implantation is also found to suppress the End of Range (EOR) defect growth.


1992 ◽  
Vol 280 ◽  
Author(s):  
Z. Ma ◽  
L. H. Allen

ABSTRACTSolid phase epitaxial (SPE) growth of SixGei1-x alloys on Si (100) was achieved by thermal annealing a-Ge/Au bilayers deposited on single crystal Si substrate in the temperature range of 280°C to 310°C. Growth dynamics was investigated using X-ray diffraction, Rutherford backscattering spectrometry, and cross-sectional transmission electron microscopy. Upon annealing, Ge atoms migrate along the grain boundaries of polycrystalline Au and the epitaxial growth initiates at localized triple points between two Au grains and Si substrate, simultaneously incorporating a small amount of Si dissolved in Au. The Au is gradually displaced into the top Ge layer. Individual single crystal SixGei1-x islands then grow laterally as well as vertically. Finally, the islands coalesce to form a uniform layer of epitaxial SixGe1-x alloy on the Si substrate. The amount of Si incorporated in the final epitaxial film was found to be dependent upon the annealing temperature.


2006 ◽  
Vol 957 ◽  
Author(s):  
Rajendra Singh ◽  
R. Scholz ◽  
U. Gösele ◽  
S. H. Christiansen

ABSTRACTZnO(0001) bulk crystals were implanted with 100 keV H2+ ions with various doses in the range of 5×1016 to 3×1017 cm-2. The ZnO crystals implanted up to a dose of 2.2×1017 cm-2 did not show any surface exfoliation, even after post-implantation annealing at temperatures up to 800°C for 1 h while those crystals implanted with a dose of 2.8×1017 cm-2 or higher exhibited exfoliated surfaces already in the as-implanted state. In a narrow dose window in between, controlled exfoliation could be obtained upon post-implantation annealing only. Cross-sectional transmission electron microscopy (XTEM) of the implanted ZnO samples showed that a large number of nanovoids were formed within the implantation-induced damage band. These nanovoids served as precursors for the formation of microcracks leading to the exfoliation of ZnO wafer surfaces. In addition to the nanovoids, elongated nanocolumns perpendicular to the ZnO wafer surfaces were also observed. These nanocolumns showed diameters of up to 10 nm and lengths of up to 500 nm. The nanocolumns were found in the ZnO wafer even well beyond the projected range of hydrogen ions.


2014 ◽  
Vol 121 (3) ◽  
pp. 621-630 ◽  
Author(s):  
Naoya Matsuda ◽  
Hiroki Ohkuma ◽  
Masato Naraoka ◽  
Akira Munakata ◽  
Norihito Shimamura ◽  
...  

Object Cerebral vasospasm after subarachnoid hemorrhage (SAH) is a serious complication. Free radicals derived from subarachnoid clotting are recognized to play an important role. Oxidized low-density lipoprotein (ox-LDL) and lectin-like oxidized LDL receptor-1 (LOX-1) have been shown to be related to the pathogenesis of atherosclerosis and may increase in cerebral arteries after SAH, due to the action of free radicals derived from a subarachnoid clot. These molecules may also affect the pathogenesis of vasospasm, generating intracellular reactive oxygen species and downregulating the expression of endothelial NO synthase (eNOS). If so, apple polyphenol might be effective in the prevention of vasospasm due to an abundant content of procyanidins, which exhibit strong radical scavenging effects, and the ability to suppress ox-LDL and LOX-1. The purposes of this study were to investigate changes in levels of ox-LDL and LOX-1 after SAH and whether administering apple polyphenol can modify cerebral vasospasm. Methods Forty Japanese white rabbits were assigned randomly to 4 groups: an SAH group (n = 10); a shamoperation group (n = 10), which underwent intracisternal saline injection; a low-dose polyphenol group (n = 10) with SAH and oral administration of apple polyphenol at 10 mg/kg per day from Day 0 to Day 3; and a high-dose polyphenol group (n = 10) with SAH and oral administration of apple polyphenol at 50 mg/kg per day. At Day 4, the basilar artery and brain was excised from each rabbit. The degree of cerebral vasospasm was evaluated by measuring the cross-sectional area of each basilar artery, and the expression of ox-LDL, LOX-1, and eNOS was examined for each basilar artery by immunohistochemical staining and reverse transcriptase polymerase chain reaction. In addition, neuronal apoptosis in the cerebral cortex was evaluated by TUNEL. Results Compared with the sham group, the expression of ox-LDL and LOX-1 in the basilar arterial wall was significantly increased in the SAH group, the expression of eNOS was significantly decreased, and the cross-sectional area of basilar artery was significantly decreased. Compared with the SAH group, the cross-sectional area of basilar artery was increased in the polyphenol groups, together with the decreased expression of ox-LDL and LOX-1 and the increased expression of eNOS. In the high-dose polyphenol group, those changes were statistically significant compared with the SAH group. In the low-dose polyphenol group, those changes were smaller than in the high-dose polyphenol group. No apoptosis and no changes were seen in the cerebral cortex in all groups. Conclusions This is the first study suggesting that ox-LDL and LOX-1 increase due to SAH and that they may play a role in the pathogenesis of vasospasm. It is assumed that procyanidins in apple polyphenol may inhibit a vicious cycle of ox-LDL, LOX-1, and ROS in a dose-dependent manner. Apple polyphenol is a candidate for preventive treatment of cerebral vasospasm.


1985 ◽  
Vol 46 ◽  
Author(s):  
D. K. Sadana ◽  
J. M. Zavada ◽  
H. A. Jenkinson ◽  
T. Sands

AbstractHigh resolution transmission electron microscopy (HRTEM) has been performed on cross-sectional specimens from high dose (1016 cm−2) H+ implanted (100) GaAs (300 keV at room temperature). It was found that annealing at 500°C created small (20-50Å) loops on {111} near the projected range (Rp)(3.2 μm). At 550-600°C, voids surrounded by stacking faults, microtwins and perfect dislocations were observed near the Rp. A phenomenological model explaining the observed results is proposed.


Sign in / Sign up

Export Citation Format

Share Document