The Microstructural Nature of Electromigration and Mechanical Stress Voids in Integratedcircuit Interconnect

1993 ◽  
Vol 309 ◽  
Author(s):  
Jamie H. Rose ◽  
Terry Spooner

AbstractIt is well known that stress and electromigration induced voiding is of major concern for integrated circuit interconnect reliability. However, there has been little systematiccharacterization of void morphology and crystallography in ever more technologically important narrow, “near-bamboo” conducting lines. Prior reports indicate thatvoids are typically wedge or slit shaped, with failure often associated with slit voids.Void face habit plane is most often reported to be {111}. Wedge and slit void morphology and crystallography have been studied in comb/serpentine and parallel line array test structures. In virtually all cases, void faces are {111} oriented. In contrast to earlier studies, intragranular wedge stress voids have been observed. All electromigration opens were due to slit voids; these were typically intragranular, in contradiction to current theories of void formation, and likely are mechanical fractures. Under accelerated test conditions, non-grain boundary diffusion paths appear to operate at distances of tens of micrometers. Relative displacement between wedge voids and attached grain boundaries occurs where a wedge face lies on a near common {111} plane for the two grains. It is suggested that slit voids are intragranular under both stress and electromigration conditions and likely associated with local interconnect depassivation. Based solely on appearance and crystallography, no void can uniquely be identified as due to stress alone or electromigration alone.

1994 ◽  
Vol 337 ◽  
Author(s):  
A.G. Dirks ◽  
R.A. Augur ◽  
S. Kordić ◽  
R.A.M. Wolters

ABSTRACTDifficulty during plasma etching and post-etch corrosion are major drawbacks of Al-Si-Cu alloy films, when used for integrated circuit interconnect. Moreover, the relatively large solute mobility of Cu in Al may lead to void formation by precipitate coarsening. As integrated circuit dimensions decrease reliability issues, such as electromigration and mechanical stress voiding, are becoming increasingly important. At present several types of Al alloys are considered as possible alternatives for Al-Si-Cu: Al-Pd, Al-Sc, Al-Pd-Cu, Al-Si-Pd, Al-Si-V, Al-Si-Sc, Al-Si-Pd-Nb, and Al-Si-V-Pd. The latter quaternary alloy has been designed such as to combine the positive aspects of both Pd and V. In comparison with Cu in Al, a) the (low temperature) solid solubility is negligible for Pd and small for V, and b) the mobility is similar for Pd, but very small for V.With transmission-electron microscopy, passivated Al-Si-Cu alloy films have been studied after thermal stressing at 200 °C: ө-Al2Cu coarsening was observed together with void condensation. Lifetests on unpassivated Al-Si-V-Pd alloys at 180 °C and 2xl06A/cm2 have shown an extremely high resistance to electromigration. Electromigration and microstructural data on these quaternary alloys will be presented. These findings suggest how the microstructure is stabilized by the combined action of the V and Pd solute atoms, a) by nm-scale (A1,V) precipitates within the Al grains and b) by small (Al,Pd) particles at the Al grain boundaries. Furthermore, the key issues in terms of reliability related microstructural phenomena are both solute and solvent mobilities in grain interiors as well as along interfaces and grain boundaries. Arguments will be given showing that at low solute concentrations the metals (V and Pd) each by themselves are not effective enough to influence the solvent motion of aluminium along interfaces and grain boundaries significantly. The combination of the two metals, however, was found to be very effective.


2008 ◽  
Vol 584-586 ◽  
pp. 380-386 ◽  
Author(s):  
Jens Ribbe ◽  
Guido Schmitz ◽  
Y. Amouyal ◽  
Yuri Estrin ◽  
Sergiy V. Divinski

The radiotracer technique was applied for measuring grain boundary diffusion of Ni in ultrafine grained (UFG) copper materials with different nominal purities and in a Cu—1wt.%Pb alloy. The UFG specimens were prepared by equal channel angular pressing at room temperature. The stability of the microstructure was studied by focused ion beam imaging. Grain boundary diffusion of the 63Ni radioisotope was investigated in the temperature interval from 293 to 490K under the formal Harrison type C kinetic conditions. Two distinct short-circuit diffusion paths were observed. The first (relatively slow) path in the UFG materials corresponds unambiguously to relaxed high-angle grain boundaries with diffusivities which are quite similar to those in the respective coarse-grained reference materials. The second path is characterized by significantly higher diffusivities. The experimental data are discussed to elucidate the contribution of nonequilibrium grain boundaries in the deformed materials. Alternative contributions of other shortcircuit diffusion paths cannot be ruled out, particularly for the Cu-Pd alloy.


1991 ◽  
Vol 225 ◽  
Author(s):  
D. T. Walton ◽  
H. J. Frost ◽  
C. V. Thompson

ABSTRACTMicrostructural evolution in thin-film strips is of interest due to the direct effect of grain structure on integrated circuit interconnect reliability and resistance to electromigration-induced failure. We have explored the evolution of interconnect grain structure via a two-dimensional grain growth simulation. We focus on the strip's transformation to the bamboo structure, in which individual grains traverse the width of the strip. We find that the approach to a fully bamboo structure is exponential, and that the rate of transformation is inversely proportional to the square of the strip width. When the simulation is extended to model grain boundary pinning due to grooving at grain boundary – free surface intersections, we find that there exists a maximum strip width to thickness ratio beyond which the transformation to the bamboo structure does not proceed to completion. By using our simulation results in conjunction with a “failure unit” model for electromigration-induced failure [4] we are able to reproduce the experimentally observed abrupt increase in time-to-failure below a critical strip width, and also model the reliability as a function of annealing conditions.


Author(s):  
D.P. Field ◽  
J.A. Nucci ◽  
R.R. Keller

Abstract A wealth of literature has arisen in the past couple of decades regarding the phenomenon of electromigration. In addition, stress voiding has received considerable attention from the research community. Some of the work on the structural character of these phenomena has focussed on the roles of crystallographic texture and grain boundary structure. It is an experimental fact that the strength of the (111) fiber texture is an indication of interconnect reliability, the stronger the texture, the more reliable the interconnect. It is also presumed that grain boundary diffusivity is a controlling factor in electromigration behavior of polycrystalline lines. Undesirable grain boundary structure is likely a cause of failure in lines with a bamboo structure as well because they are often sites of stress concentration and local incompatibilities. The present study focuses upon electromigration failures in test structures of Al-Cu lines and stress voiding in Cu lines. Texture and grain boundary structure were measured directly on the specimens using electron back-scatter diffraction and orientation imaging. It is observed that a correlation exists between grain boundary structure and void formation in strongly textured polycrystalline lines. Results indicate that secondary orientation (not just the (111) fiber), and boundary structure may be of primary importance in optimizing interconnect microstructure.


1995 ◽  
Vol 391 ◽  
Author(s):  
L. M. Klinger ◽  
E. E. Glickman ◽  
V. E. Fradkov ◽  
W. W. Mullins ◽  
C. L. Bauer

AbstractThe effect of surface and grain-boundary diffusion on interconnect reliability is addressed by extending the theory of thermal grooving to arbitrary grain-boundary flux. For a periodic array of grain boundaries, three regimes are identified: (1) equilibrium, (2) global steady state, and (3) local steady state. These regimes govern the stability of polycrystalline materials subjected to large electric (electromigration) or mechanical (stress voiding) fields, especially in thin films where grain size approximates film thickness.


1999 ◽  
Vol 5 (S2) ◽  
pp. 846-847
Author(s):  
C.J. Wauchope ◽  
R.R. Keller ◽  
J.E. Sanchez

Al thin films, used as interconnects in integrated circuit devices, are subject to voiding failures due to electromigration and stress. Electromigration is a diffusion process and voids are known to form at points of flux divergence such as triple junctions. Void formation in Al-Cu films has also been associated with 9θ-phase (Al2 Cu) precipitates [1], which form preferentially at grain boundaries and triple junctions. Some triple junctions are favored as nucleation sites [2], presumably due to energetic differences arising from the crystallographic nature of the junctions. Their character can be calculated from the crystallographic orientations of the surrounding grains and the associated grain boundary dislocation networks [3]. Bollmann's method of analysis results in two categories of triple lines: I-lines - the special case where the grain boundary dislocations balance; and U-lines - the general case where the dislocation arrays do not balance. U-lines should have higher energies than I-lines and should therefore behave differently [3, 4]. This paper investigates the relationship between triple-line character and the location of Al2 Cu precipitates at certain triple junctions in Al-lCu thin films.


1990 ◽  
Vol 51 (C1) ◽  
pp. C1-691-C1-696 ◽  
Author(s):  
K. VIEREGGE ◽  
R. WILLECKE ◽  
Chr. HERZIG

2005 ◽  
Vol 96 (10) ◽  
pp. 1187-1192 ◽  
Author(s):  
Raymond J. Kremer ◽  
Mysore A. Dayananda ◽  
Alexander H. King

Sign in / Sign up

Export Citation Format

Share Document