Compamson in the Growth and Properties of rf Sputtered μc-Si:H and Glow Discharge-Chemical Vapor Deposited μc-Si:H Films

1993 ◽  
Vol 321 ◽  
Author(s):  
J. Y. Lin ◽  
B. H. Tseng ◽  
K. C. Hsu ◽  
H. L. Hwang

ABSTRACTProperties of μc-Si:H films grown by rf sputtering and by glow discharge-chemical vapor deposition (GD-CVD) using diluted-hydrogen and hydrogen-atom-treatment method were compared employing TEM, X-ray diffraction, Raman scattering and FT-IR. The films deposited by both methods all exhibited comparable grain sizes in the range of 10–18 nm. and showed the same tendency in almost all the Measurements.

2007 ◽  
Vol 22 (4) ◽  
pp. 319-323 ◽  
Author(s):  
Jianfeng Fang ◽  
Jing Huo ◽  
Jinyuan Zhang ◽  
Yi Zheng

The structure of a chemical-vapor-deposited (CVD) diamond thin film on a Mo substrate was studied using quasi-parallel X-ray and glancing incidence techniques. Conventional X-ray diffraction analysis revealed that the sample consists of a diamond thin film, a Mo2C transition layer, and Mo substrate. The Mo2C transition layer was formed by a chemical reaction between the diamond film and the Mo substrate during the CVD process. A method for layer-thickness determination of the thin film and the transition layer was developed. This method was based on a relationship between X-ray diffraction intensities from the transition layer or its substrate and a function of grazing incidence angles. Results of glancing incidence X-ray diffraction analysis showed that thicknesses of the diamond thin film and the Mo2C transition layer were determined successfully with high precision.


1996 ◽  
Vol 423 ◽  
Author(s):  
Hassan Golestanian ◽  
S. Mirzakuchaki ◽  
E. J. Charlson ◽  
T. Stacy ◽  
E. M. Charlson

AbstractHot-filament chemical vapor deposited (HFCVD) boron doped polycrystalline diamond thin films having low volume resistivity were grown on sapphire. The films were characterized using scanning electron microscope (SEM), X-ray diffraction, and current-voltage measurements. SEM micrographs show good crystalline structure with preferred (100) orientation normal to the surface of the film. X-ray diffraction pattern revealed diamond characteristics with the four typical diamond peaks present. Finally, the obtained I-V characteristics indicated that the film's volume resistivity is at least two orders of magnitude lower than those of HFCVD polycrystalline diamond thin films grown on silicon under similar growth conditions.


2012 ◽  
Vol 1426 ◽  
pp. 359-364
Author(s):  
Siva Konduri ◽  
Max Noack ◽  
Vikram Dalal

ABSTRACTIn this paper, we report on deposition and properties of nanocrystalline Ge:H films . The films were grown from germane and hydrogen mixtures using Radio frequency Plasma-enhanced chemical vapor deposition (RF-PECVD) process using ∼45 MHz frequency. The crystallinity of the films was measured using Raman measurements and from x-ray diffraction techniques, it was found that the grain size was a strong function of deposition pressure, temperature and hydrogen/germane ratios. High hydrogen ratios and high powers led to films with smaller grains. Higher pressures and smaller hydrogen/germane ratio led to films with larger grain sizes, as did higher growth temperatures. The mobility of electrons and holes was measured using space charge limited current (SCLC) techniques in n+-n-n+ devices. It was found that nominally undoped films were generally n type with carrier concentrations in the 1E14/cm3 range. Mobility was found to increase with grain size, with 60 nm grains showing mobility in the 2-3 cm2/V-s range.


2001 ◽  
Vol 695 ◽  
Author(s):  
Joshua Pelleg ◽  
E. Elish

ABSTRACTStresses in chemical vapor deposited polycide tungsten silicide (poly-Si/WSi2) wereevaluated at each stage of fabrication. The individual layers of the Si/SiO2/Poly-Si/WSi2/Poly-Si multilayer structure were deposited sequentially on separate wafers and subjected to x-ray diffraction analysis in the as deposited and annealed conditions to determine the changes in strain occurring in WSi2. Samples cut from wafers containing all the layers were capped with a 25nm thermal oxide and the strain in the WSi2 film was also analyzed by XRD. The change in strain of the WSi2 layer, following each step of the fabrication process, was evaluated by the lattice parameter variation of the c axis. The layers of the multilayered film affect the stress in the WSi2. A poly-Si layer on top of WSi2 reduces its stress, since it introduces a compressive component, which further decreases upon annealing. It also maintains a Si supply at the poly- Si/SiO2 interface, thus, eliminating Si outdiffusion during heat treatment in an oxygen containingambient. Capping the system by a thin oxide layer modifies the stress pattern of the WSi2, which becomes compressive.


1997 ◽  
Vol 3 (3) ◽  
pp. 129-135 ◽  
Author(s):  
M. Shahidul Haque ◽  
Hameed A. Naseem ◽  
Ajay P. Malshe ◽  
William D. Brown

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3526
Author(s):  
Siphesihle Siphamandla Magubane ◽  
Christopher Joseph Arendse ◽  
Siphelo Ngqoloda ◽  
Franscious Cummings ◽  
Christopher Mtshali ◽  
...  

In this article, we used a two-step chemical vapor deposition (CVD) method to synthesize methylammonium lead-tin triiodide perovskite films, MAPb1−xSnxI3, with x varying from 0 to 1. We successfully controlled the concentration of Sn in the perovskite films and used Rutherford backscattering spectroscopy (RBS) to quantify the composition of the precursor films for conversion into perovskite films. According to the RBS results, increasing the SnCl2 source amount in the reaction chamber translate into an increase in Sn concentration in the films. The crystal structure and the optical properties of perovskite films were examined by X-ray diffraction (XRD) and UV-Vis spectrometry. All the perovskite films depicted similar XRD patterns corresponding to a tetragonal structure with I4cm space group despite the precursor films having different crystal structures. The increasing concentration of Sn in the perovskite films linearly decreased the unit volume from about 988.4 Å3 for MAPbI3 to about 983.3 Å3 for MAPb0.39Sn0.61I3, which consequently influenced the optical properties of the films manifested by the decrease in energy bandgap (Eg) and an increase in the disorder in the band gap. The SEM micrographs depicted improvements in the grain size (0.3–1 µm) and surface coverage of the perovskite films compared with the precursor films.


1995 ◽  
Vol 415 ◽  
Author(s):  
David B. Beach ◽  
Catherine E. Vallet

ABSTRACTFilms of lead lanthanum titanate were deposited using metal-organic chemical vapor deposition (MOCVD) at temperatures between 500 and 550°C in a hot-wall reactor. The precursors used were Pb(THD)2, La(THD)3, and Ti(THD)2(I-OPr)2where THD = 2,2,6,6-tetramethyl-3,5-heptanedionate, O2C11H19, and I-OPr = isopropoxide, OC3H7. The three precursors were delivered to the reactor using a single solution containing all three precursors dissolved in tetraglyme and the precursor solution was volatilized at 225°C. Films were deposited on Si and Si/Ti/Pt substrates, and characterized using Rutherford Backscattering Spectroscopy (RBS) and X-ray diffraction(XRD). Films deposited at 550°C had a composition which was close to that of the precursor solution while films deposited at 500°C were deficient in lanthanum. Even at 500°C, the desired perovskite phase is readily observed by XRD. Subsequent rapid thermal processing of the film deposited at 500°C showed an increase in the intensity of the X-ray lines, but did not change the width of these lines, implying that grain sizes had remained unchanged.


Author(s):  
Denis Rychkov ◽  
Sergey Arkhipov ◽  
Elena Boldyreva

A new salt of L-valinium hydrogen maleate was used as an example to study structure-forming units in amino acid maleates. This compound was crystallized, its structure solved from single-crystal X-ray diffraction data, and the phase purity of the bulk powder sample confirmed by X-ray powder diffraction and FT–IR spectra. The stability of the new salt was analyzed using density functional theory andPIXELcalculations with focus on theC22(12) structure-forming crystallographic motif. This motif was of particular interest as it is common for almost all maleates. The exceptionally high ability of maleic acid to form salts with various amino acids was rationalized.


Sign in / Sign up

Export Citation Format

Share Document