Artificially Synthesized Non-Coherent Interfaces in Fe-Ti Multilayers and their Influence on Solid State Reactions

1994 ◽  
Vol 343 ◽  
Author(s):  
Z.H. Yan ◽  
M.L. Trudeau ◽  
A. Van Neste ◽  
R. Schulz ◽  
D.H. Ryan ◽  
...  

ABSTRACTThe influence of the interfacial structure on the solid state reaction products in Fe-Ti multilayers has been studied using various preparation conditions and characterization techniques. Sharp and diffused interfaces were produced by using either sequential or co-evaporation in the interfacial region. The reaction product, in the case of the sharp interface, is the bcc supersaturated solid solution of Ti(Fe) while, in the case of the diffused interface, an amorphous phase is formed. Therefore, nucleating the amorphous phase at the interface by local co-evaporation alters the reaction path observed in Fe-Ti multilayers. The solid state reactions were studied using low and high angle X-ray diffraction and Mossbauer measurements. The results are discussed in light of recent thermodynamic calculations on the Fe-Ti system.

1984 ◽  
Vol 37 ◽  
Author(s):  
Bruce M. Clemens ◽  
Jeffrey C. Buchholz

AbstractFormation of an amorphous zirconium-nickel phase by solid state reaction of a layered crystalline structure has been studied by in-situ resistivity, x-ray diffraction, and Auger depth profiling. The reaction was studied as a function of layer thickness and reaction temperature.Samples with a layer thickness of less than 4 atomic planes had x-ray diffraction spectra with one broad maximum characteristic of amorphous material. As the layer thickness increased, the maximum broadened and separated into two resolved peaks corresponding to crystalline nickel and zirconium. These structures were transformed to an amorphous nickel-zirconium alloy by an anneal at temperatures below the crystallization temperature of the amorphous phase. The reaction occured by a layer growth process, where the thickness of the layer evolved linearly with the square root of time.


Author(s):  
S.R. Summerfelt ◽  
C.B. Carter

The wustite-spinel interface can be viewed as a model interface because the wustite and spinel can share a common f.c.c. oxygen sublattice such that only the cations distribution changes on crossing the interface. In this study, the interface has been formed by a solid state reaction involving either external or internal oxidation. In systems with very small lattice misfit, very large particles (>lμm) with coherent interfaces have been observed. Previously, the wustite-spinel interface had been observed to facet on {111} planes for MgFe2C4 and along {100} planes for MgAl2C4 and MgCr2O4, the spinel then grows preferentially in the <001> direction. Reasons for these experimental observations have been discussed by Henriksen and Kingery by considering the strain energy. The point-defect chemistry of such solid state reactions has been examined by Schmalzried. Although MgO has been the principal matrix material examined, others such as NiO have also been studied.


Author(s):  
F. Ma ◽  
S. Vivekanand ◽  
K. Barmak ◽  
C. Michaelsen

Solid state reactions in sputter-deposited Nb/Al multilayer thin films have been studied by transmission and analytical electron microscopy (TEM/AEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The Nb/Al multilayer thin films for TEM studies were sputter-deposited on (1102)sapphire substrates. The periodicity of the films is in the range 10-500 nm. The overall composition of the films are 1/3, 2/1, and 3/1 Nb/Al, corresponding to the stoichiometric composition of the three intermetallic phases in this system.Figure 1 is a TEM micrograph of an as-deposited film with periodicity A = dA1 + dNb = 72 nm, where d's are layer thicknesses. The polycrystalline nature of the Al and Nb layers with their columnar grain structure is evident in the figure. Both Nb and Al layers exhibit crystallographic texture, with the electron diffraction pattern for this film showing stronger diffraction spots in the direction normal to the multilayer. The X-ray diffraction patterns of all films are dominated by the Al(l 11) and Nb(l 10) peaks and show a merging of these two peaks with decreasing periodicity.


1970 ◽  
Vol 43 (2) ◽  
pp. 188-209
Author(s):  
Y. Minoura ◽  
M. Tsukasa

Abstract The reactions of rubber with aldehydes have previously been studied in latex or in solutions and the reaction products formed by cyclization, condensation, or addition, have been reported. In the present study, solid-state reactions of rubber with aldehydes were carried out. It was found that crosslinked rubbers may be obtained by press curing in the presence of aldehydes with acidic catalysts. Poly-chloroprene and Hypalon especially undergo these reactions without a catalyst or with a small amount of catalyst. In the experiments using various aldehydes, some improvements in the properties of the crosslinked rubber were observed when aldehydes such as paraformaldehyde or α-polyoxymethylene were used. Some Lewis acids such as SnCl2·2H2O were found to be more effective catalysts than the above, and it was found that organic acids such as p-toluenesulfonic acid could also be used. The curing seemed to be an ionic reaction. The physical properties of the crosslinked rubber are similar to those of sulfur-cured rubbers.


1990 ◽  
Vol 5 (3) ◽  
pp. 488-497 ◽  
Author(s):  
G. C. Wong ◽  
W. L. Johnson ◽  
E. J. Cotts

The mechanisms of metallic glass formation and competing crystallization processes in mechanically-deformed Ni-Zr multilayered composites have been investigated by means of differential scanning calorimetry and x-ray diffraction. Our investigation of the heat of formation of amorphous NixZr1−x alloys shows a large negative heat of mixing (on the order of 30 kJ/mole) for compositions near Zr55Ni45 with a compositional dependence qualitatively similar to that predicted by mean field theory. We find that the products of solid state reactions in composites of Ni and Zr can be better understood in terms of the equilibrium phase diagram and the thermal stability of liquid quenched metallic glasses. We have determined the composition of the growing amorphous phase at the Zr interface in these Ni-Zr diffusion couples to be 55 ± 4% Zr. We investigated the kinetics of solid state reactions competing with the solid state amorphization reaction and found the value of the activation energy of the initial crystallization and growth of the growing amorphous phase to be 2.0 ± 0.1 eV, establishing an upper limit on the thermal stability of the growing amorphous phase.


1993 ◽  
Vol 307 ◽  
Author(s):  
Eric E. Fullerton ◽  
S. M. Mini ◽  
A. S. Bommannavar ◽  
C. H. Sowers ◽  
S. N. Ehrlich ◽  
...  

ABSTRACTWe present structural characterizations of a series of sputtered Fe/Nb and V/Nb superlattices by high-angle x-ray diffraction. Diffraction scans were performed with the scattering vector at various angles (χ) with respect to the layers. χ=0° diffraction spectra (normal to the layers) were fitted to a general structural model to determine the (110) lattice strains, interfacial disorder and interdiffusion. χ>0° spectra probe the lattice strain of the individual layers and the in-plane interfacial coherence. Both systems form incoherent interfaces above a critical modulation wavelength (ΛC). At ΛC, the Fe/Nb system undergoes a crystalline-to-amorphous transition while the V/Nb forms in-plane coherent interfaces.


Cerâmica ◽  
2018 ◽  
Vol 64 (371) ◽  
pp. 397-402
Author(s):  
O. R. K. Montedo ◽  
F. Raupp-Pereira ◽  
A. P. N. de Oliveira

Abstract In this work, some properties, such as sinterability, modulus of elasticity (E), coefficient of thermal expansion (CTE) and dielectric constant (εr), of composites constituted by nanoparticulate alumina (27-43 nm, 35 m2.g-1) in different contents (0 to 77 vol%) and a LZSA glass-ceramic composition (17.7Li2O-5.2ZrO2-68.1SiO2-9.0Al2O3, molar basis) were evaluated. Dry powders of the raw materials (alumina and LZSA parent glass, frit) were uniaxially pressed (40 MPa) and the obtained compacts were sintered at 600-950 °C (1 h holding time). X-ray diffraction (XRD) study was performed in order to investigate the solid-state reactions occurred in LZSA-based compositions during sintering. XRD results were correlated to the CTE, E and εr of sintered samples. The CTE of the obtained composites decreased as alumina content increased mainly due to the β-spodumeness (solid solution Li2O.Al2O3.4-10SiO2) formation. The results concerning the E (22.3±1.5 GPa) and εr (3.1±1.3) for the composite with 5.6 vol% addition sintered at 850 °C for 1 h indicated, in a preliminary way, the possibility of development of materials with suitable properties for applications concerning to the low temperature co-fired ceramic (LTCC) technology.


2008 ◽  
Vol 591-593 ◽  
pp. 644-648
Author(s):  
J.M.A. Gimenez ◽  
Carlos Roberto Grandini ◽  
A.R. Jurelo

A new class of hybrid ruteno-cuprates – such as Ru-1212 and Ru-1222 – was discovered in 1995 by Bauerfeind and collaborators. These materials present superconducting and magnetic states at low temperatures, an atypical duality in other superconductors. The superconductivity is more easily observed in Ru-1222, while Ru-1212 is a more problematic case, due to the strong effects of the preparation details in its superconducting properties, becoming the material superconductor or not. Ru-1212 presents a critical temperature that can vary between 0 and 46 K, depending on the preparation conditions, and a temperature of magnetic transition of around 132 K. The samples were prepared through solid state reactions, by using a mixture of high purity powders, followed by calcination and sinterization in the nitrogen and oxygen atmospheres. This paper shows the preparation process of Ru-1212 samples, followed by their structural and magnetic characterization.


1990 ◽  
Vol 187 ◽  
Author(s):  
J.A. Bain ◽  
B.M. Clemens ◽  
S. Brennan

AbstractThe interfacial structure of Pt/Nb and Pt/Ni sputtered multilayer films was studied using x-ray diffraction in symmetric, asymmetric, and grazing incidence modes. The grazing incidence and asymmetric diffraction were used to distinguish alloying effects on the lattice spacing from strain in the films. This strain was shown to be consistent with semi-coherent interfaces in the Pt/Ni but not in the Pt/Nb in which another strain generating mechanism dominates.


Sign in / Sign up

Export Citation Format

Share Document