Studies of Pecvd and Ozone CVD Deposition Rate, Uniformity and Step Coverage

1994 ◽  
Vol 363 ◽  
Author(s):  
Xin Guo ◽  
J. Zhao ◽  
J. Qiao ◽  
A. Tabata ◽  
B. Pang ◽  
...  

AbstractChemical vapor deposition (CVD) has been used to deposit films such as silicon, silicon oxide, silicon nitride, tungsten, silicide, copper and titanium nitride in the semiconductor industry. The reaction driving forces for CVD are typically temperature for thermal CVD, plasma ionization for plasma enhanced CVD, or atomic oxygen for ozone CVD. In the recent years, plasma enhanced CVD (PECVD) and ozone CVD have found extensive applications in the semiconductor industry, due to the higher deposition rate and lower deposition temperature. For example, PECVD and ozone CVD are used to deposit almost all dielectric films such as silicon oxide and silicon nitride on a wafer. The dielectric films on wafers serve as insulating layers between conducting metal layers and as passivation layer on top of semiconductor devices.

2005 ◽  
Vol 872 ◽  
Author(s):  
John M. Maloney ◽  
Sara A. Lipka ◽  
Samuel P. Baldwin

AbstractLow pressure chemical vapor deposition (LPCVD) and plasma enhanced chemical vapor deposition (PECVD) silicon oxide and silicon nitride films were implanted subcutaneously in a rat model to study in vivo behavior of the films. Silicon chips coated with the films of interest were implanted for up to one year, and film thickness was evaluated by spectrophotometry and sectioning. Dissolution rates were estimated to be 0.33 nm/day for LPCVD silicon nitride, 2.0 nm/day for PECVD silicon nitride, and 3.5 nm/day for PECVD silicon oxide. A similar PECVD silicon oxide dissolution rate was observed on a silicon oxide / silicon nitride / silicon oxide stack that was sectioned by focused ion beam etching. These results provide a biostability reference for designing implantable microfabricated devices that feature exposed ceramic films.


2000 ◽  
Vol 39 (Part 1, No. 1) ◽  
pp. 330-336 ◽  
Author(s):  
Sang Woo Lim ◽  
Yukihiro Shimogaki ◽  
Yoshiaki Nakano ◽  
Kunio Tada ◽  
Hiroshi Komiyama

1996 ◽  
Vol 447 ◽  
Author(s):  
Simon M. Karecki ◽  
Laura C. Pruette ◽  
L. Rafael Reif

AbstractPresently, the semiconductor industry relies almost exclusively on perfluorocompounds (e.g., tetrafluoromethane, hexafluoroethane, nitrogen trifluoride. sulfur hexafluoride, and. more recently, octafluoropropane) for the etching of silicon dioxide and silicon nitride films in wafer patterning and PECVD (plasma enhanced chemical vapor deposition) chamber cleaning applications. The use of perfluorocompounds (PFCs) by the industry is considered problematic because of the high global warming potentials (GWPs) associated with these substances. Potential replacements for perfluorocompounds are presently being evaluated at MIT. In an initial stage of the study, intended to screen potential candidates on the basis of etch performance, a large number of compounds is being tested in a commercially available magnetically enhanced reactive ion etch tool. The potential alternatives discussed in this work are trifluoroacetic anhydride (TFAA) and three members of the iodofluorocarbon (IFC) family – iodotrifluoromethane, iodopentafluorocthane, and 2-iodoheptafluoropropane. This paper will present the results of etch rate comparisons between TFAA and octafluoropropane, a perfluorinated dielectric etchant. Designed experiment (DOE) methodology, combined with neural network software, was used to study a broad parameter space of reactor conditions. The effects of pressure, magnetic field, and gas flow rates were studied. Additionally, more limited tests were carried out with the three iodofluorocarbon gases. Etch rate data, as well as Auger electron spectroscopy data from substrates exposed to IFC plasmas will be presented. All gases were evaluated using both silicon dioxide as well as silicon nitride substrates. Results indicate that these compounds may be potentially viable in plasma etching applications.


2001 ◽  
Vol 7 (S2) ◽  
pp. 1228-1229
Author(s):  
Lew Rabenberg ◽  
J. P. Zhou ◽  
Kil-Soo Ko ◽  
Rita Johnson

Thin films of amorphous silicon oxide and silicon nitride are routinely used as gate dielectrics in silicon-based microelectronic devices. It is valuable to be able to image them and measure their thicknesses quickly and accurately. This brief note describes conditions that can be used to obtain accurate and reproducible TEM images of oxide-nitride-oxide (ONO) thin films.Obtaining adequate contrast differences between oxide and nitride is not trivial because they have the same average atomic number, and both phases are amorphous. As stoichiometric compounds, both SiO2 and Si3N4 would have average atomic numbers equal to 10. For SiO2, (14+2(8))/3=10, and for Si3N4, (3(14)+4(7))/7=10. Thus, the atomic number contrast between these two is weak or nonexistent. Similarly, the amorphous character prevents the use of conventional diffraction contrast techniques.However, the density of Si3N4 (3.2 g/cm3) is considerably greater than the density of SiO2 (2.6 g/cm3), reflecting the higher average coordination of N compared with O.


1983 ◽  
Vol 29 ◽  
Author(s):  
Gary A. West ◽  
Arunava Gupta

ABSTRACTFilms of silicon nitride have been deposited using a continuous wave CO2 laser to excite gaseous mixtures of silane and ammonia. A typical deposition rate is 150Å/min. The hydrogen film content and its dependence on the substrate deposition temperature are similar to that observed for plasma CVD silicon nitride. The CO2 laser CVD films are silicon rich with a Si/N ratio = 1.2 at a NH3/SiH4 gas flow ratio of 1000. Conformal step coverage is observed on patterned silicon oxide features.


1994 ◽  
Vol 342 ◽  
Author(s):  
Y. Ma ◽  
S.V. Hattangady ◽  
T. Yasuda ◽  
H. Niimi ◽  
S. Gandhi ◽  
...  

ABSTRACTWe have used a combination of plasma and rapid thermal processing for the formation of thin gate-dielectric films. The bulk dielectric films investigated include silicon oxide, oxynitride and multilayer oxide-nitride-oxide heterostructures formed by plasma-assisted oxidation, remoteplasma-enhanced chemical-vapor deposition (remote-PECVD) followed by post-deposition rapid thermal annealing (RTA). Auger electron spectroscopy (AES) and infrared absorption spectroscopy (IR) have been used to study the chemistry of interface formation and the bulk dielectric chemical bonding, respectively. Electrical characterization of MOS capacitor structures incorporating these dielectrics was performed by conventional capacitance and current voltage techniques, C-V and I-V, respectively.


1986 ◽  
Vol 68 ◽  
Author(s):  
G. Lucovsky ◽  
D. V. Tsu ◽  
R. J. Markunas

AbstractWe describe a plasma enhanced chemical vapor deposition process (PECVD) developed for the low temperature deposition of thin films of silicon oxides, nitrides and oxynitrides.The process, designated as remote PECVD (RPECVD), differs from conventional PECVD in two ways; (a) not all of the process gases are subjected to plasma excitation; and (b) the deposition is done outside of the plasma region.We include an empirical model of the deposition process chemistry and discuss the use of infrared spectroscopy (IR) and Auger electron spectroscopy (AES) to characterize the local atomic structure of the deposited films.


2007 ◽  
Vol 46 (3B) ◽  
pp. 1290-1294 ◽  
Author(s):  
Vasco Verlaan ◽  
Silvester Houweling ◽  
Karine van der Werf ◽  
Hanno D. Goldbach ◽  
Ruud E. I. Schropp

Sign in / Sign up

Export Citation Format

Share Document