Alloying of Cubic Alloys Based on Al3Ti: Phase Instabilities and the Control of Fault Energies

1994 ◽  
Vol 364 ◽  
Author(s):  
David G. Morris ◽  
Reto Lerf ◽  
Mireille Leboeuf

AbstractAlloys based on Al3Ti with the ordered L12 structure show slight ductility when the Ti content is near 25% and about 8% of Mn or Cr is present as ternary addition. Such materials are relatively soft due to the easy movement of APB-dissociated superdislocations but remain almost completely brittle. While the precise reasons for such brittleness are not clear, it seems reasonable to consider that alloying to lower fault energies may soften the material and enhance ductility. In the present study, new alloys are selected on the basis of electronic structure calculations using the discrete variational cluster method, and the ordered state, mechanical behaviour, and dislocation and fault characteristics examined.The alloys examined were based on the Al-26%Ti-8%Mn composition, with lower Ti and Mn contents, in an attempt to maintain a single-phase matrix and weaker, less-directional bonding and lower fault energies. In addition, for some alloys, Al was partially substituted by Mg.The single-phase region of the L12 Al-Ti-Mn phase is very small and second phases such as DO22 and complex AlxMn can appear which lead to hardening and strain ageing, much as Al2Ti does in more Ti-rich alloys. Mg substitution is limited to a few percent before a Mg-rich phase appears and the alloys examined are complex mixtures of this, the L12 phase, and γTiAl. The dislocation structures observed after deformation are examined to determine fault energies, and it is shown that these values can be rationalised in terms of the structural instabilities of the matrix phases and the secondary phases produced.

Author(s):  
S. Mahajan ◽  
M. R. Pinnel ◽  
J. E. Bennett

The microstructural changes in an Fe-Co-V alloy (composition by wt.%: 2.97 V, 48.70 Co, 47.34 Fe and balance impurities, such as C, P and Ni) resulting from different heat treatments have been evaluated by optical metallography and transmission electron microscopy. Results indicate that, on air cooling or quenching into iced-brine from the high temperature single phase ϒ (fcc) field, vanadium can be retained in a supersaturated solid solution (α2) which has bcc structure. For the range of cooling rates employed, a portion of the material appears to undergo the γ-α2 transformation massively and the remainder martensitically. Figure 1 shows dislocation topology in a region that may have transformed martensitically. Dislocations are homogeneously distributed throughout the matrix, and there is no evidence for cell formation. The majority of the dislocations project along the projections of <111> vectors onto the (111) plane, implying that they are predominantly of screw character.


Author(s):  
C.M. Sung ◽  
K.J. Ostreicher ◽  
M.L. Huckabee ◽  
S.T. Buljan

A series of binary oxides and SiC whisker reinforced composites both having a matrix composed of an α-(Al, R)2O3 solid solution (R: rare earth) have been studied by analytical electron microscopy (AEM). The mechanical properties of the composites as well as crystal structure, composition, and defects of both second phases and the matrix were investigated. The formation of various second phases, e.g. garnet, β-Alumina, or perovskite structures in the binary Al2O3-R2O3 and the ternary Al2O3-R2O3-SiC(w) systems are discussed.Sections of the materials having thicknesses of 100 μm - 300 μm were first diamond core drilled. The discs were then polished and dimpled. The final step was ion milling with Ar+ until breakthrough occurred. Samples prepared in this manner were then analyzed using the Philips EM400T AEM. The low-Z energy dispersive X-ray spectroscopy (EDXS) data were obtained and correlated with convergent beam electron diffraction (CBED) patterns to identify phase compositions and structures. The following EDXS parameters were maintained in the analyzed areas: accelerating voltage of 120 keV, sample tilt of 12° and 20% dead time.


1992 ◽  
Vol 7 (8) ◽  
pp. 2035-2039 ◽  
Author(s):  
T.G. Holesinger ◽  
D.J. Miller ◽  
S. Fleshler ◽  
L.S. Chumbley

Reactions with alumina and platinum crucibles were studied during the preparation of Bi2Sr2Ca1Cu2Oy “2212” glasses. In particular, reactions with Al2O3 are of interest since alumina is a potential substrate material in applications of this superconductor. Glasses processed using alumina crucibles were completely homogeneous and free of secondary phases although the material contained 2.26 at. % Al in solution. After heat treatments, Al was found in the form of SrCaAlOy particles located primarily along grain boundaries of the 2212 superconducting phase. Platinum contamination was minimal (<0.02 at. %) and no Pt-containing secondary phases were found in amorphous or annealed samples. Glasses made with Pt crucibles were found to contain small amounts of CaO, Sr14−xCaxCu24O41, and 2201 as second phases. Differential thermal analysis (DTA) suggested that the crystallization processes were essentially the same for all samples although the small amount of Al seemed to slow the kinetics leading to the formation of 2212. Neither Al nor Pt was detected within the 2212 phase. The measured superconducting compositions in each annealed sample were nearly the same with identical transition temperatures of 88 K. Overall differences in stoichiometry were accommodated by changes in the number and composition of the secondary phases present.


2007 ◽  
Vol 539-543 ◽  
pp. 2928-2933 ◽  
Author(s):  
V.S. Yusupov ◽  
A.I. Milyaev ◽  
Galia F. Korznikova ◽  
Alexander V. Korznikov ◽  
J.K. Kovneristii

Results of experimental research into evolution of the structure and microhardness of the hard magnetic Fe-30Cr-8Co-0,7Ti-0,5V-0,7Si alloy during complex two-level loading (compression + torsion) in isothermal conditions at various temperatures in single-phase region are reported. It was revealed that the deformation leads to a strong refinement of initial coarse-grained structure in the whole volume of the sample, however the generated structure is non-uniform through the body of the sample. In an active zone of deformation, near to mobile head, there is a microcrystalline layer with a grain size of about 5 microns which thickness poorly depends on the formation. With removal from the active zone of deformation the grain size increases, and microhardness decreases.


1984 ◽  
Vol 32 ◽  
Author(s):  
Rustum Roy ◽  
S. Komarneni ◽  
D.M. Roy

ABSTRACTInstead of aiming to prepare homogeneous gels and xerogels, this paper reports on work done to prepare deliberately diphasic materials. This has been achieved by three different paths: (1) mixing 2 sols; (2) mixing 1 sol with 1 solution; and (3) post formation diffusion of either one or two solutions.By the last named process we have made SiO2, mullite and alumina based composites, with silver halides, BaSO4, CdS, etc., as the dispersed phase. The crystal size can be confined to the initial pores by rapid diffusion giving rise to extremely fine second phases in the submicron range. Subsequent reduction of appropriate metallic salts can be used to give finely dispersed metals (e.g. Cu, Ni) in essentially any xerogel matrix. The open porosity makes these metal atoms very accessible.By the first two processes we have made both single phase and di-phasic gels of the same composition (prototype: mullite) and shown that though they cannot be distinguished by XRD, SEM, and TEM, by DTA and thermal processing, they are radically different. Such di-phasic gels store more metastable energy than any other solids.


2020 ◽  
Vol 989 ◽  
pp. 577-582
Author(s):  
I.E. Illarionov ◽  
T.R. Gilmanshina ◽  
A.A. Kovaleva

The purpose of this work is to study the structure and mechanical properties of an aluminum – magnesium system alloy after various types of heat treatment (quenching and ageing). The microstructure of an alloy has been studied by means of Zeiss OBSERVER.D1m microscope combined with a camera and image display on a monitor screen. Micro X-ray spectral analysis was performed by means of Carl Zeiss EVO 50 scanning electron microscope. The micro-hardness of the samples has been measured on prepared metallographic sections by means of DM8 micro-hardness meter. In the course of the process it has been found that quenching the Al-12,78% Mg alloy from temperatures of 430–440 ° C does not lead to the formation of a single-phase solid solution. Ageing at 100 ° C enables the formation of secondary phases. It was noted that with an increase in the quenching temperature, the micro-hardness increases slightly. An increase in the exposure time doesn’t influence greatly the micro-hardness of the alloy, while the structure remains practically unchanged.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rui Han ◽  
Hongsheng Chen ◽  
Dong Zhou ◽  
Xiaoning Shi ◽  
Jiyuan Xu ◽  
...  

Abstract The high coercivity of Nd–Fe–B magnets can also be obtained in the Ce–Fe–B magnets fabricated via the dual-main-phase (DMP) method in which the high abundance Ce was used to substitute Nd(Pr). The inhomogeneous distributions of the matrix grains in the DMP magnet play a key role in the enhanced magnetic performance. Compared with the single-phase magnet, more grain boundary phases encapsulating the matrix 2:14:1 grain are formed in the DMP magnet, which reduce the exchange coupling between adjacent magnetic grains. The switching field distribution and the interaction field distribution of the Ce–Fe–B magnets were determined by the first-order-reversal curves (FORC). The switching field peaks around 6 kOe, 11 kOe and 12 kOe in the FORC distribution indicate that three major reversal components coexist for the DMP magnet. The overlapp of the second and third switching field peaks reveals the presence of a pinning interaction within individual magnetic grains with a core–shell structure, which further improve the coercivity of the magnet.


Sign in / Sign up

Export Citation Format

Share Document