Characterization of Pseudo-Porous SiC/C Coatings on Nextel™440 and Nicalon™ Fibers

1994 ◽  
Vol 365 ◽  
Author(s):  
N.R. Khasgiwale ◽  
E.P. Butler ◽  
L. Tsakalakos ◽  
D.A. Hensley ◽  
W.R. Cannon ◽  
...  

ABSTRACTPseudo-porous SiC/C coatings were deposited on Nextel™440 and Nicalon™ fibers by CVD. The morphology and chemistry of the coatings was evaluated, both before and after oxidation, using Scanning Electron Microscopy (SEM), X-Ray Diffraction Analysis (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Auger spectroscopy. Coated fibers were subjected to two different oxidation treatments to assess coating stability: a) oxidation at 600°C for 20 hours, and b) oxidation at 1000°C for 20 hours. Pseudo-porous SiC/C on Nicalon™ fibers appear to be more oxidation resistant than the same coatings on Nextel™440 fibers.

2000 ◽  
Vol 15 (10) ◽  
pp. 2076-2079
Author(s):  
Chika Nozaki ◽  
Takashi Yamada ◽  
Kenji Tabata ◽  
Eiji Suzuki

Synthesis of a rutile-type lead-substituted tin oxide with (110) face was investigated. The characterization was performed by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, infrared spectroscopy, x-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller surface area measurements. The homogeneous rutile-type lead-substituted tin oxide was obtained until 4.1 mol% of tin was substituted with lead. The surface of obtained oxide had a homogeneously lead-substituted (110) face.


2007 ◽  
Vol 1008 ◽  
Author(s):  
Micha Jost ◽  
Peter Gerstel ◽  
Joachim Bill ◽  
Fritz Aldinger

AbstractIn this paper, the suitability of DNA- and RNA-bases, nucleosides and nucleotides, and DNA itself as structure-directing agents for the mineralization of ZnO-based materials is discussed. Those bioorganic molecules are able to trigger the morphology of mineralization products ranging from smooth, homogenous thin films to sponge-like, sheet-like and fibrous products. Besides the investigation of morphological features by scanning electron microscopy, the structural characterization of these materials by X-ray diffraction, vibrational spectroscopy, photoluminescence spectroscopy and photoelectron spectroscopy is discussed.


2012 ◽  
Vol 620 ◽  
pp. 314-319
Author(s):  
Nur Amira Mamat Razali ◽  
Fauziah Abdul Aziz ◽  
Saadah Abdul Rahman

Hardwood is wood from angiosperm trees. The characteristic of hardwood include flowers, endosperm within seeds and the production of fruits that contain the seeds. This paper aims to discuss the preparation and characterization of cellulose obtained from hardwood. The hardwood Merbau (Intsia bijuga) was chosen as raw material in this study. Alkaline treatment and delignification methods were used for the preparation of cellulose. Acid hydrolysis was employed to produce cellulose nanocrystal (CNC). The treated and untreated samples were characterized using x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The final product, from both trated and untreated samples were then compared.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 1047-1051
Author(s):  
JIANPING MA ◽  
ZHIMING CHEN ◽  
GANG LU ◽  
MINGBIN YU ◽  
LIANMAO HANG ◽  
...  

Intense photoluminescence (PL) has been observed at room temperature from the polycrystalline SiC samples prepared from carbon-saturated Si melt at a temperature ranging from 1500 to 1650°C. Composition and structure of the samples have been confirmed by means of X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy. PL measurements with 325 nm UV light excitation revealed that the room temperature PL spectrum of the samples consists of 3 luminescent bands, the peak energies of which are 2.38 eV, 2.77 eV and 3.06 eV, respectively. The 2.38 eV band is much stronger than the others. It is suggested that some extrinsic PL mechanisms associated with defect or interface states would be responsible to the intensive PL observed at room temperature.


2012 ◽  
Vol 174-177 ◽  
pp. 508-511
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

BiFeO3 polyhedrons had been successfully synthesized via a hydrothermal method. The as-prepared products were characterized by power X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The possible mechanisms for the formation of BiFeO3 polyhedrons were discussed. Though comparison experiments, it was found that the kind of precursor played a key role on the morphology control of BiFeO3 crystals.


2022 ◽  
Vol 321 ◽  
pp. 126326
Author(s):  
Gladis Aparecida Galindo Reisemberger de Souza ◽  
Ramón Sigifredo Cortés Paredes ◽  
Frieda Saicla Barros ◽  
Gustavo Bavaresco Sucharski ◽  
Sebastião Ribeiro Junior ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document