Stability and Growth of Lennard-Jones Strained Layer Superlattice Interfaces

1984 ◽  
Vol 37 ◽  
Author(s):  
Brian W. Dodson

AbstractIn the context of a model system whose atoms interact via Lennard-Jones (LJ) interatomic potentials, we have studied the stability of an initially perfect strained layer superlattice interface (SLS) and the process of growth of a mismatched layer on a substrate using Monte Carlo techniques. An initially perfect SLS interface is found to be metastable up to 12% mismatch, a much higher value than is found on real SLS systems. In contrast, we find that, within the limitations of the calculations, a perfect SLS interface cannot be grown in an LJ system. The implications of these results for understanding SLS growth processes is discussed.

1985 ◽  
Vol 56 ◽  
Author(s):  
BRIAN W. DODSON

AbstractWe have developed a procedure, based on conventional Monte Carlo methods, to investigate the limits of stability of a strained layer superlattice (SLS) system as a function of lattice mismatch and layer thickness. The method is demonstrated by the analysis of two-dimensional Lennard-Jones SLS systems, for which the regime of absolute SLS stability is mapped out. Extension of the technique to three-dimensional silicon-like model systems is discussed, and appropriate model potentials for stability analysis of the Si/SiGe system are introduced.


1985 ◽  
Vol 63 ◽  
Author(s):  
Brian W. Dodson ◽  
Paul A. Taylor

ABSTRACTThe authors have previously introduced a method, based on Monte Carlo techniques, for simulation of crystal growth processes in a continuous space. We have applied the method, initially used to simulate growth of two-dimensional Lennard-Jones systems, to treat growth of silicon in three dimensions. The interaction model for silicon is taken to be the recently introduced Stillinger-Weber (S-W) potential, which is a two- and threebody classical potential. Although the early stages of growth seem to be well modelled by the S-W potential, growth of even a single monolayer of epitaxial (111) silicon does not seem to be possible. Modifications to the S-W potential were considered, and found to be unacceptable physically. More accurate treatment of non-ideal atomic configuration energies is necessary to arrive at physically realistic growth simulations.


2010 ◽  
Vol 21 (03) ◽  
pp. 349-363 ◽  
Author(s):  
A. S. MARTINS ◽  
C. X. S. SEIXAS ◽  
L. B. dos SANTOS ◽  
P. R. RIOS

Molecular dynamics and Monte Carlo techniques are employed for the study of Lennard–Jones fluids near the solid–liquid transition region. Systematic comparisons between the predictions of both techniques are discussed, with particular emphasis on the structural evolution and location of the transition (melting) temperature Tm.


Author(s):  
Hamish L. Fraser

The topic of strain and lattice parameter measurements using CBED is discussed by reference to several examples. In this paper, only one of these examples is referenced because of the limitation of length. In this technique, scattering in the higher order Laue zones is used to determine local lattice parameters. Work (e.g. 1) has concentrated on a model strained-layer superlattice, namely Si/Gex-Si1-x. In bulk samples, the strain is expected to be tetragonal in nature with the unique axis parallel to [100], the growth direction. When CBED patterns are recorded from the alloy epi-layers, the symmetries exhibited by the patterns are not tetragonal, but are in fact distorted from this to lower symmetries. The spatial variation of the distortion close to a strained-layer interface has been assessed. This is most readily noted by consideration of Fig. 1(a-c), which show enlargements of CBED patterns for various locations and compositions of Ge. Thus, Fig. 1(a) was obtained with the electron beam positioned in the center of a 5Ge epilayer and the distortion is consistent with an orthorhombic distortion. When the beam is situated at about 150 nm from the interface, the same part of the CBED pattern is shown in Fig. 1(b); clearly, the symmetry exhibited by the mirror planes in Fig. 1 is broken. Finally, when the electron beam is positioned in the center of a 10Ge epilayer, the CBED pattern yields the result shown in Fig. 1(c). In this case, the break in the mirror symmetry is independent of distance form the heterointerface, as might be expected from the increase in the mismatch between 5 and 10%Ge, i.e. 0.2 to 0.4%, respectively. From computer simulation, Fig.2, the apparent monocline distortion corresponding to the 5Ge epilayer is quantified as a100 = 0.5443 nm, a010 = 0.5429 nm and a001 = 0.5440 nm (all ± 0.0001 nm), and α = β = 90°, γ = 89.96 ± 0.02°. These local symmetry changes are most likely due to surface relaxation phenomena.


Author(s):  
Edward P. Herbst ◽  
Frank Schorfheide

Dynamic stochastic general equilibrium (DSGE) models have become one of the workhorses of modern macroeconomics and are extensively used for academic research as well as forecasting and policy analysis at central banks. This book introduces readers to state-of-the-art computational techniques used in the Bayesian analysis of DSGE models. The book covers Markov chain Monte Carlo techniques for linearized DSGE models, novel sequential Monte Carlo methods that can be used for parameter inference, and the estimation of nonlinear DSGE models based on particle filter approximations of the likelihood function. The theoretical foundations of the algorithms are discussed in depth, and detailed empirical applications and numerical illustrations are provided. The book also gives invaluable advice on how to tailor these algorithms to specific applications and assess the accuracy and reliability of the computations. The book is essential reading for graduate students, academic researchers, and practitioners at policy institutions.


2014 ◽  
Vol 6 (1) ◽  
pp. 1006-1015
Author(s):  
Negin Shagholi ◽  
Hassan Ali ◽  
Mahdi Sadeghi ◽  
Arjang Shahvar ◽  
Hoda Darestani ◽  
...  

Medical linear accelerators, besides the clinically high energy electron and photon beams, produce other secondary particles such as neutrons which escalate the delivered dose. In this study the neutron dose at 10 and 18MV Elekta linac was obtained by using TLD600 and TLD700 as well as Monte Carlo simulation. For neutron dose assessment in 2020 cm2 field, TLDs were calibrated at first. Gamma calibration was performed with 10 and 18 MV linac and neutron calibration was done with 241Am-Be neutron source. For simulation, MCNPX code was used then calculated neutron dose equivalent was compared with measurement data. Neutron dose equivalent at 18 MV was measured by using TLDs on the phantom surface and depths of 1, 2, 3.3, 4, 5 and 6 cm. Neutron dose at depths of less than 3.3cm was zero and maximized at the depth of 4 cm (44.39 mSvGy-1), whereas calculation resulted  in the maximum of 2.32 mSvGy-1 at the same depth. Neutron dose at 10 MV was measured by using TLDs on the phantom surface and depths of 1, 2, 2.5, 3.3, 4 and 5 cm. No photoneutron dose was observed at depths of less than 3.3cm and the maximum was at 4cm equal to 5.44mSvGy-1, however, the calculated data showed the maximum of 0.077mSvGy-1 at the same depth. The comparison between measured photo neutron dose and calculated data along the beam axis in different depths, shows that the measurement data were much more than the calculated data, so it seems that TLD600 and TLD700 pairs are not suitable dosimeters for neutron dosimetry in linac central axis due to high photon flux, whereas MCNPX Monte Carlo techniques still remain a valuable tool for photonuclear dose studies.


2020 ◽  
Vol 27 ◽  
Author(s):  
Sheetal Uppal ◽  
Mohd. Asim Khan ◽  
Suman Kundu

Aims: The aim of our study is to understand the biophysical traits that govern the stability and folding of Synechocystis hemoglobin, a unique cyanobacterial globin that displays unusual traits not observed in any of the other globins discovered so far. Background: For the past few decades, classical hemoglobins such as vertebrate hemoglobin and myoglobin have been extensively studied to unravel the stability and folding mechanisms of hemoglobins. However, the expanding wealth of hemoglobins identified in all life forms with novel properties, like heme coordination chemistry and globin fold, have added complexity and challenges to the understanding of hemoglobin stability, which has not been adequately addressed. Here, we explored the unique truncated and hexacoordinate hemoglobin from the freshwater cyanobacterium Synechocystis sp. PCC 6803 known as “Synechocystis hemoglobin (SynHb)”. The “three histidines” linkages to heme are novel to this cyanobacterial hemoglobin. Objective: Mutational studies were employed to decipher the residues within the heme pocket that dictate the stability and folding of SynHb. Methods: Site-directed mutants of SynHb were generated and analyzed using a repertoire of spectroscopic and calorimetric tools. Result: The results revealed that the heme was stably associated to the protein under all denaturing conditions with His117 playing the anchoring role. The studies also highlighted the possibility of existence of a “molten globule” like intermediate at acidic pH in this exceptionally thermostable globin. His117 and other key residues in the heme pocket play an indispensable role in imparting significant polypeptide stability. Conclusion: Synechocystis hemoglobin presents an important model system for investigations of protein folding and stability in general. The heme pocket residues influenced the folding and stability of SynHb in a very subtle and specific manner and may have been optimized to make this Hb the most stable known as of date. Other: The knowledge gained hereby about the influence of heme pocket amino acid side chains on stability and expression is currently being utilized to improve the stability of recombinant human Hbs for efficient use as oxygen delivery vehicles.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Satish Kumar Tiwari ◽  
Ravikant Singh ◽  
Nilesh Kumar Thakur

AbstractWe propose a model for tropic interaction among the infochemical-producing phytoplankton and non-info chemical-producing phytoplankton and microzooplankton. Volatile information-conveying chemicals (infochemicals) released by phytoplankton play an important role in the food webs of marine ecosystems. Microzooplankton is an ecologically important grazer of phytoplankton for coexistence of a large number of phytoplankton species. Here, we discuss how information transferred by dimethyl sulfide shapes the interaction of phytoplankton. Phytoplankton deterrents may lead to propagation of IPP bloom. The interaction between IPP and microzooplankton follows the Beddington–DeAngelis-type functional response. Analytically, we discuss boundedness, stability and Turing instability of the model system. We perform numerical simulation for temporal (ODE model) as well as a spatial model system. Our numerical investigation shows that microzooplankton grazing refuse of IPP leads to oscillatory dynamics. Increasing diffusion coefficient of microzooplankton shows Turing instability. Time evolution also plays an important role in the stability of system dynamics. The results obtained in this paper are useful to understand the dominance of algal bloom in coastal and estuarine ecosystem.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 662
Author(s):  
Mateu Sbert ◽  
Jordi Poch ◽  
Shuning Chen ◽  
Víctor Elvira

In this paper, we present order invariance theoretical results for weighted quasi-arithmetic means of a monotonic series of numbers. The quasi-arithmetic mean, or Kolmogorov–Nagumo mean, generalizes the classical mean and appears in many disciplines, from information theory to physics, from economics to traffic flow. Stochastic orders are defined on weights (or equivalently, discrete probability distributions). They were introduced to study risk in economics and decision theory, and recently have found utility in Monte Carlo techniques and in image processing. We show in this paper that, if two distributions of weights are ordered under first stochastic order, then for any monotonic series of numbers their weighted quasi-arithmetic means share the same order. This means for instance that arithmetic and harmonic mean for two different distributions of weights always have to be aligned if the weights are stochastically ordered, this is, either both means increase or both decrease. We explore the invariance properties when convex (concave) functions define both the quasi-arithmetic mean and the series of numbers, we show its relationship with increasing concave order and increasing convex order, and we observe the important role played by a new defined mirror property of stochastic orders. We also give some applications to entropy and cross-entropy and present an example of multiple importance sampling Monte Carlo technique that illustrates the usefulness and transversality of our approach. Invariance theorems are useful when a system is represented by a set of quasi-arithmetic means and we want to change the distribution of weights so that all means evolve in the same direction.


Sign in / Sign up

Export Citation Format

Share Document