Amorphization of Graphite Under ion or Electron Irradiation

1994 ◽  
Vol 373 ◽  
Author(s):  
Hiroaki Abe ◽  
Hiroshi Naramoto ◽  
Chiken Kinoshita

AbstractA transmission electron microscope interfaced with ion accelerators (TEM-Accelerator Facility) in JAERI-Takasaki has been used to get insights into the irradiation-induced amorphization of highlyoriented pyrolytic graphite. Amorphization is induced through lattice disorder under irradiation with electrons or ions at room temperature. The displacement threshold energy is determined as 27 eV and 28 eV from the electron-energy dependence of the amorphization fluence at room temperature and 373 K, respectively. The amorphization fluences in dpa are almost identical for irradiation with various kinds of ions within the experimental error. It indicates the thermal spikes do not have an important role for the amorphization over the energy density between 10-4 to 10-2 eV/atom.

Author(s):  
W. P. Wergin ◽  
S. Roy ◽  
E. F. Erbe ◽  
C. A. Murphy ◽  
C. D. Pooley

Larvae of the nematode, Steinernema carpocapsae Weiser strain All, were cryofixed and freezesubstituted for 3 days in acetone containing 2% osmium tetroxide according to established procedures. Following chemical fixation, the nematodes were brought to room temperature, embedded in Spurr's medium and sectioned for observation with a Hitachi S-4100 field emission scanning electron microscope that was equipped with an Oxford CT 1500 Cryotrans System. Thin sections, about 80 nm thick, similar to those generally used in conventional transmission electron microscope (TEM) studies were mounted on copper grids and stained with uranyl acetate for 30 min and lead citrate for 5 min. Sections about 2 μm thick were also mounted and stained in a similar fashion. The grids were mounted on an Oxford grid holder, inserted into the microscope and onto a cryostage that was operated at ambient temperature. Thick and thin sections of the larvae were evaluated and photographed in the SEM at different accelerating voltages. Figs. 4 and 5 have undergone contrast conversion so that the images would resemble transmitted electron micrographs obtained with a TEM.


Alloys of Al-5% Pb and Al-5% Pb-0.5% Si (by mass) have been manufactured by rapid solidification and then examined by transmission electron microscopy. The rapidly solidified alloy microstructures consist of 5-60 nm Pb particles embedded in an Al matrix. The Pb particles have a cube-cube orientation relation with the Al matrix, and are cub-octahedral in shape, bounded by {100} Al, Pb and {111} Al, Pb facets. The equilibrium Pb particle shape and therefore the anisotropy of solid Al-solid Pb and solid Al-liquid Pb surface energies have been monitored by in situ heating in the transmission electron microscope over the temperature range between room temperature and 550°C. The ani­sotropy of solid Al-solid Pb surface energy is constant between room temperature and the Pb melting point, with a {100} Al, Pb surface energy about 14% greater than the {111} Al, Pb surface energy, in good agreement with geometric near-neighbour bond energy calculations. The {100} AI, Pb facet disappears when the Pb particles melt, and the anisotropy of solid Al-liquid Pb surface energy decreases gradually with increasing temperature above the Pb melting point, until the Pb particles become spherical at about 550°C.


2013 ◽  
Vol 27 (19) ◽  
pp. 1341018 ◽  
Author(s):  
J. M. LIANG ◽  
L. L. HE ◽  
Z. Q. SHEN ◽  
D. L. ZHANG

Europium doped CaAl 2 O 4 nanocones have been grown first time by thermal evaporation method. Scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to analyze the morphology, size and crystal structure of the nanocones. The body of the nanocones are about 2–20 μm in length and their diameters are 200 nm to 1 μm at one end and tapers off to a ~ 40–200 nm at the tip end. The as-synthesized nanocones are single crystalline in monoclinic structure and grow along the [010] direction and the normal direction of (100) and (001). The room temperature photoluminescence (PL) and cathodoluminescence (CL) spectrum measurement reveals that CaAl 2 O 4: Eu 2+ nanocones emit light at about 440 nm.


1988 ◽  
Vol 100 ◽  
Author(s):  
M. W. Bench ◽  
I. M. Robertson ◽  
M. A. Kirk

ABSTRACTTransmission electron microscopy experiments have been performed to investigate the lattice damage created by heavy-ion bombardments in GaAs. These experiments have been performed in situ by using the HVEN - Ion Accelerator Facility at Argonne National Laboratory. The ion bcorbardments (50 keV Ar+ and Kr+) and the microscopy have been carried out at temperatures rangrin from 30 to 300 K. Ion fluences ranged from 2 × 1011 to 5 × 1013 ions cm−2.Direct-inpact amorphization is observed to occur in both n-type and semi-insulating GaAs irradiated to low ion doses at 30 K and room temperature. The probability of forming a visible defect is higher for low temperature irradiations than for room temperature irradiations. The amorphous zones formed at low temperature are stable to temperatures above 250 K. Post implantation annealing is seen to occur at room temperature for all samples irradiated to low doses until eventually all visible damage disappears.


Nanoscale ◽  
2018 ◽  
Vol 10 (17) ◽  
pp. 7978-7983 ◽  
Author(s):  
Liang Cheng ◽  
Xianfang Zhu ◽  
Jiangbin Su

The coalescence of two single-crystalline Au nanoparticles on surface of amorphous SiOxnanowire, as induced by electron beam irradiation, wasin situstudied at room temperature in a transmission electron microscope.


2000 ◽  
Vol 650 ◽  
Author(s):  
A. Meldrum ◽  
K. Beaty ◽  
L. A. Boatner ◽  
C. W. White

ABSTRACTIrradiation-induced amorphization of Cd2Nb2O7 pyrochlore was investigated by means of in-situ temperature-dependent ion-irradiation experiments in a transmission electron microscope, combined with ex-situ ion-implantation (at ambient temperature) and RBS/channeling analysis. The in-situ experiments were performed using Ne or Xe ions with energies of 280 and 1200 keV, respectively. For the bulk implantation experiments, the incident ion energies were 70 keV (Ne+) and 320 keV (Xe2+). The critical amorphization temperature for Cd2Nb2O7 is ∼480 K (280 keV Ne+) or ∼620 K (1200 keV Xe2+). The dose for in-situ amorphization at room temperature is 0.22 dpa for Xe2+, but is 0.65 dpa for Ne+ irradiation. Both types of experiments suggest a cascade overlap mechanism of amorphization. The results were analyzed in light of available models for the crystalline-to-amorphous transformation and were compared to previous ionirradiation experiments on other pyrochlore compositions.


1981 ◽  
Vol 7 ◽  
Author(s):  
A. Mogro-Campero ◽  
E.L. Hall ◽  
J.L. Walter ◽  
A.J. Ratkowski

ABSTRACTSpecimens of amorphous Fe75B25 produced by rapid quenching from the melt were annealed to complete crystallization and subjected to 1 MeV electron irradiation in a transmission electron microscope at room temperature and at 130 K. The irradiation was interrupted at various intervals in order to obtain bright field images and diffraction patterns. The Fe3B crystals did not become amorphous at room temperature, even after damage levels of several dpa, whereas at 130 K the crystalline to amorphous transformation was observed to be complete at damage levels below 1 dpa. The results are combined with those of ion irradiation work on Fe3B; qualitative agreement is found between Fe3B and previous work on the Zr3Al alloy concerning their response to displacement damage by electron and ion irradiation.


2008 ◽  
Vol 07 (04n05) ◽  
pp. 229-233 ◽  
Author(s):  
S. LAZZEZ ◽  
K. BOUBAKER BEN MAHMOUD ◽  
M. AMLOUK

ZnIn 2 S 4 nanofilms were grown on In 2 S 3 substrates. The band gap of ZnIn 2 S 4 barriers was approximately 2.8 eV at room temperature. The morphology and structure of the obtained nanofilms were already investigated via transmission electron microscope (TEM), scanning electron microscope (SEM) and X-ray diffraction analyses.1,2 In this paper, thermal analyses are performed via a photothermal technique, which has been used to indirectly evaluate the specific heat capacity of the obtained Zn -doped nanofilms. The yielded value for an optimal zinc-to-indium ratio, x (0.33), at the mean room temperature (T∞ = 301 K ), was Cs ≈ 411.5 J K -1 kg -1.


2006 ◽  
Vol 527-529 ◽  
pp. 481-484 ◽  
Author(s):  
W. Sullivan ◽  
John W. Steeds

Samples of 4H SiC, both n- and p-doped, have been irradiated with low-energy electrons in a transmission electron microscope. The dependence of the silicon vacancy-related V1 ZPL doublet (~860nm) on electron energy and electron dose has been investigated by low temperature photoluminescence spectroscopy. Furthermore, this luminescence centre has been studied across a broad range of samples of various doping levels. Some annealing characteristics of this centre are reported.


Sign in / Sign up

Export Citation Format

Share Document