The Disordering Process in an Ll2 Ordered Alloy

1984 ◽  
Vol 39 ◽  
Author(s):  
J. A. Horton ◽  
A. Dasgupta ◽  
C. T. Liu

ABSTRACTThe antiphase boundary (APB) structure and the disordering process have been studied by transmission electron microscopy (TEM) in a long-rangeordered alloy with Ll2 structure and composition (Ni70Fe30)3(V58Al40Ti2). With an increase in temperature from a single-phase field into a two-phase field, disordering occurs both homogeneously within ordered domains and heterogeneously along APBs. Disordering continues by a ripening process with the disordered islands shrinking while the disordered bands on the prior APBs grow. The APBs are partially aligned on {100} while the material is single phase. As disordering proceeds, the degree of alignment of the disordered bands on {100} increases until complete alignment results. A correlation of the APB structure with room temperature mechanical properties indicates no dramatic change at the transition to the two-phase structure.

Author(s):  
G. Mackiewicz Ludtka

Historically, metals exhibit superplasticity only while forming in a two-phase field because a two-phase microstructure helps ensure a fine, stable grain size. In the U-5.8 Nb alloy, superplastici ty exists for up to 2 h in the single phase field (γ1) at 670°C. This is above the equilibrium monotectoid temperature of 647°C. Utilizing dilatometry, the superplastic (SP) U-5.8 Nb alloy requires superheating to 658°C to initiate the α+γ2 → γ1 transformation at a heating rate of 1.5°C/s. Hence, the U-5.8 Nb alloy exhibits an anomolous superplastic behavior.


2012 ◽  
Vol 02 (01) ◽  
pp. 1250007 ◽  
Author(s):  
LAXMAN SINGH ◽  
U. S. RAI ◽  
K. D. MANDAL ◽  
MADHU YASHPAL

Ultrafine powder of CaCu2.80Zn0.20Ti4O12 ceramic was prepared using a novel semi-wet method. DTA/TG analysis of dry powder gives pre-information about formation of final product around 800°C. The formation of single phase was confirmed by X-ray diffraction analysis. The average particle size of sintered powder of the ceramic obtained from XRD and Transmission electron microscopy was found 59 nm and 102 nm, respectively. Energy Dispersive X-ray studies confirm the stoichiometry of the synthesized ceramic. Dielectric constant of the ceramic was found to be 2617 at room temperature at 1 kHz.


1994 ◽  
Vol 364 ◽  
Author(s):  
Y. Gao ◽  
J. Zhu ◽  
Q. G. Cai

AbstractThe deformation structure of polycrystalline TiAl-based alloys after uniaxial compression at temperature range from 77K to 1073K has been examined using transmission electron microscopy. It was observed that a large number of faulted dipoles are commonly present in deformation structure of the alloys compressed at low temperature 77K and room temperature. The nature of the faulted dipoles has been determined to be intrinsic stacking fault lying on {111} plane, bounded by 1/6<112] partial dislocations. A possible mechanism for the formation of the faulted dipoles was suggested. The results of the statistic observation shows that faulted dipoles in deformed Ti-48A1 and Ti-(47–48) Al-X (X = V,Cr,Mn) alloys are less than those in single phase Ti-52A1 alloy, and the number of the faulted dipoles decreases with increasing deformation temperature. The effect of the faulted dipoles on plastic deformation of the alloy was discussed.


1994 ◽  
Vol 9 (1) ◽  
pp. 236-245 ◽  
Author(s):  
S.D. Walck ◽  
M.S. Donley ◽  
J.S. Zabinski ◽  
V.J. Dyhouse

Films of PbO/MoS2, grown by pulsed laser deposition, exhibit a significant improvement in tribological performance compared to MoS2 films grown by the same process. The microstructure and crystallography of PbO/MoS2 composite films were investigated using transmission electron microscopy (TEM) to identify the features responsible for this tribological improvement. Self-supporting samples were prepared from pulsed laser deposited, PbO/MoS2 thin films grown on single crystal sodium chloride substrates. Films deposited at room temperature exhibited a two-phase microstructure with one of the phases being amorphous. X-ray microanalysis results showed that the crystalline phase had significantly higher concentration ratios of Mo/Pb, Mo/S, and Pb/S than did the amorphous phase. Films grown at 300 °C were polycrystalline, with a grain size of about 20 nm, and had a NaCl type structure which was isomorphous to PbS. The grains had rectangular shape, and exhibited preferred orientation with the sodium chloride substrate. The concentration of S for these films was approximately 80% of the S concentration for films grown at room temperature. Both the high temperature and room temperature films had S concentrations which were higher than expected from the MoS2 in the target; this was attributed to gettering of the S in the vacuum chamber by Pb. The electron diffraction results, together with previously published results, suggest that the crystal structure of the phases in these films is not responsible for the improvement in tribological properties. However, the microstructural components formed during film growth do determine the wear-induced chemical reaction pathways.


1988 ◽  
Vol 133 ◽  
Author(s):  
S. A. Court ◽  
J. P. A. Löfvander ◽  
M. A. Stucke ◽  
P. Kurath ◽  
H. L. Fraser

ABSTRACTSamples of polycrystalline Ti3Al-base alloys, and a two phase Ti3Al/TiAl mixture have been deformed at room temperature and at elevated temperatures and examined subsequently by transmission electron microscopy in order to determine the influence of temperature and alloy content on the relative activity of the various slip systems. In particular, the detailed influence of covalent bonding on dislocation mobility in Ti3Al has been identified.


2005 ◽  
Vol 494 ◽  
pp. 13-18
Author(s):  
Velimir Radmilović ◽  
D. Mitlin ◽  
U. Dahmen

We show that it is possible to use high rate co-evaporation of Al and Si onto room temperature substrates to achieve a novel two-phase nanoscale microstructure. These nanocomposites have a hardness as high as 4GPa (Al-23at.%Si), and display noticeable plasticity. Films with compositions of Al-12at.%Si and pure Al (used as baseline) were analyzed using transmission electron microscopy (TEM). The scale of the Al-12at.%Si microstructure is an order of magnitude finer compared to that of pure Al films. It consists of a dense distribution of spherical nanoscale Si particles separating irregularly-shaped small Al grains. These new structures may have a mechanical performance advantage over conventional single phase nanomaterials due to the role of the dispersed hard phase in promoting strain hardening.


1990 ◽  
Vol 5 (1) ◽  
pp. 5-8 ◽  
Author(s):  
J. D. Livingston ◽  
E. L. Hall

Transmission electron microscopy of two-phase V-Hf-Nb and V-Hf-Nb-Ti alloys plastically deformed at room temperature shows that {111} (112) twinning is a major deformation mode for the HfV2-based Laves phase. Bands of concentrated shear are also observed. Possible approaches to enhance low-temperature deformability in other Laves phases are discussed.


2004 ◽  
Vol 842 ◽  
Author(s):  
M. W. Wittmann ◽  
I. Baker ◽  
J. A. Hanna

ABSTRACTIn an attempt to produce a two-phase alloy consisting of a L21–structured (Fe, Ni)2MnAl-based phase in either a B2 or b.c.c. matrix, seven Fe-Ni-Mn-Al alloys were cast. Transmission electron microscopy (TEM) of the as-cast alloys revealed a range of microstructures including single phase L21, a f.c.c./B2 eutectic, and alternating, coherent 10–60 nm wide ordered and disordered b.c.c. rods aligned along <100>. A description of the phases, including chemical compositions and hardnesses is presented.


Author(s):  
A.J. Tousimis ◽  
T.R. Padden

The size, shape and surface morphology of human erythrocytes (RBC) were examined by scanning electron microscopy (SEM), of the fixed material directly and by transmission electron microscopy (TEM) of surface replicas to compare the relative merits of these two observational procedures for this type specimen.A sample of human blood was fixed in glutaraldehyde and washed in distilled water by centrifugation. The washed RBC's were spread on freshly cleaved mica and on aluminum coated microscope slides and then air dried at room temperature. The SEM specimens were rotary coated with 150Å of 60:40- gold:palladium alloy in a vacuum evaporator using a new combination spinning and tilting device. The TEM specimens were preshadowed with platinum and then rotary coated with carbon in the same device. After stripping the RBC-Pt-C composite film, the RBC's were dissolved in 2.5N HNO3 followed by 0.2N NaOH leaving the preshadowed surface replicas showing positive topography.


Author(s):  
S. Mahajan

The evolution of dislocation channels in irradiated metals during deformation can be envisaged to occur in three stages: (i) formation of embryonic cluster free regions, (ii) growth of these regions into microscopically observable channels and (iii) termination of their growth due to the accumulation of dislocation damage. The first two stages are particularly intriguing, and we have attempted to follow the early stages of channel formation in polycrystalline molybdenum, irradiated to 5×1019 n. cm−2 (E > 1 Mev) at the reactor ambient temperature (∼ 60°C), using transmission electron microscopy. The irradiated samples were strained, at room temperature, up to the macroscopic yield point.Figure 1 illustrates the early stages of channel formation. The observations suggest that the cluster free regions, such as A, B and C, form in isolated packets, which could subsequently link-up to evolve a channel.


Sign in / Sign up

Export Citation Format

Share Document