Mold Compounds: Linking Material Science and IC Package Reliability

1995 ◽  
Vol 390 ◽  
Author(s):  
Steven K. Groothuis ◽  
K. Gail Heinen

ABSTRACTMaking the transition from mechanical testing of mold compounds to actual Integrated Circuit (IC) plastic package reliability requires an understanding of material behavior under the influences of moisture, temperature, and varying load conditions. This paper will focus on the role of material strengths, strain energy, and nonlinear effects in determining plastic package reliability. Examples of correlation between materials testing and reliability data will be presented.

1999 ◽  
Vol 121 (3) ◽  
pp. 148-155 ◽  
Author(s):  
Kang Yong Lee ◽  
Taek Sung Lee

The purpose of this paper is to evaluate the delamination and fracture integrity of the integrated circuit (IC) plastic package under hygrothermal loading by the approaches of stress analysis and fracture mechanics. The plastic small outline J-lead (SOJ) package with a dimpled diepad under the reflow soldering process of infrared (IR) heating type is considered. On the package without a crack, the stress variation according to the change of the design variables such as the material and shape of the package is calculated and the possibility of delamination is considered. For the model fully delaminated between the chip and the dimpled diepad, J-integrals are calculated for the various design variables and the fracture integrity is discussed. From the results, optimal values of design variables to prevent the delamination and fracture of the package are obtained. In this study, the finite difference method (FDM) program to obtain the vapor pressure from the content of moisture absorbed into the package is developed.


2019 ◽  
Vol 2019 (1) ◽  
pp. 000091-000094
Author(s):  
Alvin Denoyo ◽  
Darwin De Lazo ◽  
Ivan Costa ◽  
Allen Menor

Abstract Polymers being used in a plastic-encapsulated integrated circuit (IC) package exposed to a humid environment absorbed moisture and expand resulting to a so called delamination failure. Weak or imperfect adhesions between the interfaces of the mold compound and adhesive unto the leadframe surface are often the main sources of these failures. In response to automotive requirements and to ensure excellent package reliability and integrity, delamination in all interfaces should then be eliminated. Thus the primary objective of this work is to fulfill the no delamination criteria in all interfaces after moisture soak for an exposed pad package. To satisfy these requirements, activities includes leadframe design improvements, surface enhancement and bill-of-material changes. With the design improvements implemented, still the material compatibility plays an important role in achieving improved package reliability.


Author(s):  
Thomas M. Moore

In the last decade, a variety of characterization techniques based on acoustic phenomena have come into widespread use. Characteristics of matter waves such as their ability to penetrate optically opaque solids and produce image contrast based on acoustic impedance differences have made these techniques attractive to semiconductor and integrated circuit (IC) packaging researchers.These techniques can be divided into two groups. The first group includes techniques primarily applied to IC package inspection which take advantage of the ability of ultrasound to penetrate deeply and nondestructively through optically opaque solids. C-mode Acoustic Microscopy (C-AM) is a recently developed hybrid technique which combines the narrow-band pulse-echo piezotransducers of conventional C-scan recording with the precision scanning and sophisticated signal analysis capabilities normally associated with the high frequency Scanning Acoustic Microscope (SAM). A single piezotransducer is scanned over the sample and both transmits acoustic pulses into the sample and receives acoustic echo signals from the sample.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Ryan B. Sefkow ◽  
Nicholas J. Maciejewski ◽  
Barney E. Klamecki

Previously it was shown that including smaller inset regions of less stiff material in the larger O-ring section at locations of high stress results in lower strain energy density in the section. This lower energy content is expected to lead to improved long-term seal performance due to less permanent material deformation and so less loss of seal-housing contact pressure. The shape of the inset region, the time-dependent change in material properties, and hence change in seal behavior over time in use were not considered. In this research experimental and numerical simulation studies were conducted to characterize the time-dependent performance of O-ring section designs with small inset regions of different mechanical behaviors than the larger surrounding section. Seal performance in terms of the rate of loss of contact pressure of modified designs and a baseline elastic, one-material design was calculated in finite element models using experimentally measured time-dependent material behavior. The elastic strain energy fields in O-ring sections were calculated under applied pressure and applied displacement loadings. The highest stress, strain, and strain energy regions in O-rings are near seal-gland surface contacts with significantly lower stress in regions of applied pressure. If the size of the modified region of the seal is comparable to the size of the highest energy density region, the shape of the inset is not a major factor in determining overall seal section behavior. The rate of loss of seal-housing contact pressure over time was less for the modified design O-ring sections compared with the baseline seal design. The time-dependent performance of elastomeric seals can be improved by designing seals based on variation of mechanical behavior of the seal over the seal section. Improvement in retention of sealing contact pressure is expected for seal designs with less stiff material in regions of high strain energy density.


2021 ◽  
Author(s):  
Petr Kaspar ◽  
Ivana Kolmasova ◽  
Ondrej Santolik ◽  
Martin Popek ◽  
Pavel Spurny ◽  
...  

<p><span>Sprites and halos are transient luminous events occurring above thunderclouds. They can be observed simultaneously or they can also appear individually. Circumstances leading to initiation of these events are still not completely understood. In order to clarify the role of lightning channels of causative lightning return strokes and the corresponding thundercloud charge structure, we have developed a new model of electric field amplitudes at halo/sprite altitudes. It consists of electrostatic and inductive components of the electromagnetic field generated by the lightning channel in free space at a height of 15 km. Above this altitude we solve Maxwell’s equations self-consistently including the nonlinear effects of heating and ionization/attachment of the electrons. At the same time, we investigate the role of a development of the thundercloud charge structure and related induced charges above the thundercloud. We show how these charges lead to the different distributions of the electric field at the initiation heights of the halos and sprites. We adjust free parameters of the model using observations of halos and sprites at the Nydek TLE observatory and using measurements of luminosity curves of the corresponding return strokes measured by an array of fast photometers. The latter measurements are also used to set the boundary conditions of the model.</span></p>


Author(s):  
Stefan Offermanns ◽  
Stefan Weihe

The present paper deals with the deformation and failure mechanisms of austenitic piping under the influence of oxyhydrogen reactions for the safety evaluation of incident scenarios in technical installations based on previous work of the author [1–5]. For the characterization of the processes, detonation tests performed at the Materials Testing Institute University of Stuttgart (MPA Stuttgart) have been used. The aim of these experiments was to study the detonation processes in head spray cooling piping of boiling water reactors. The experiments were performed on austenitic pipes with an outer diameter of O. D. = 114.3 mm and various wall thicknesses. Oxyhydrogen was used in its stoichiometric ratio of 2H2+O2 mixed with various amounts of an inert gas component. These tests have shown that less amounts of reactive gas may result in a stronger reaction of the pipe structure. This observation is attributed to the influence of the so-called overdriven detonation. Depending on the ratio of oxyhydrogen to the inert gas component and the pipe-wall thickness, adiabatic shear bands can occur in the piping structure. Adiabatic shear bands are very narrow zones with intense localized shear deformations due to the conversion of a significant portion of strain energy into heat. In order to describe this phenomenon numerically, a strain-based failure model was used which can reflect material damage over a wide range of different stress states. However, it has shown that damage of the studied material depends significantly on the Lode angle. Furthermore, no clear dependence of the failure limit on the loading rate has been found for the studied material. For the constitutive description of the material behavior under the occurring loading rates and temperatures suitable material models were selected and the required parameters have been evaluated experimentally and verified by numerical methods. With the aid of this constitutive description of the material behavior and the failure model numerical simulations of the detonation tests were carried out.


Author(s):  
Carlos Bustamante-Orellana ◽  
Robinson Guachi ◽  
Lorena Guachi-Guachi ◽  
Simone Novelli ◽  
Francesca Campana ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6651
Author(s):  
Zhaonian Wang ◽  
Jiangbing Du ◽  
Weihong Shen ◽  
Jiacheng Liu ◽  
Zuyuan He

Chromatic dispersion engineering of photonic waveguide is of great importance for Photonic Integrated Circuit in broad applications, including on-chip CD compensation, supercontinuum generation, Kerr-comb generation, micro resonator and mode-locked laser. Linear propagation behavior and nonlinear effects of the light wave can be manipulated by engineering CD, in order to manipulate the temporal shape and frequency spectrum. Therefore, agile shapes of dispersion profiles, including typically wideband flat dispersion, are highly desired among various applications. In this study, we demonstrate a novel method for agile dispersion engineering of integrated photonic waveguide. Based on a horizontal double-slot structure, we obtained agile dispersion shapes, including broadband low dispersion, constant dispersion and slope-maintained linear dispersion. The proposed inverse design method is objectively-motivated and automation-supported. Dispersion in the range of 0–1.5 ps/(nm·km) for 861-nm bandwidth has been achieved, which shows superior performance for broadband low dispersion. Numerical simulation of the Kerr frequency comb was carried out utilizing the obtained dispersion shapes and a comb spectrum for 1068-nm bandwidth with a 20-dB power variation was generated. Significant potential for integrated photonic design automation can be expected.


Author(s):  
David J. Dewees ◽  
Phillip E. Prueter ◽  
Seetha Ramudu Kummari

Modeling of cyclic elastic-plastic material behavior (hardening) has been widely identified as a critical factor in the finite element (FE) simulation of weld residual stresses. The European Network on Neutron Techniques Standardization for Structural Integrity (NeT) Project has provided in recent years both standard test cases for simulation and measurement, as well as comprehensive material characterization. This has allowed the role of hardening in simulation predictions to be isolated and critically evaluated as never before possible. The material testing information is reviewed, and isotropic, nonlinear kinematic and combined hardening models are formulated and tested. Particular emphasis is placed on material model selection for general fitness-for-service assessments, as it relates to the guidance for weld residual stress (WRS) in flaw assessments of in-service equipment in Annex E of the FFS standard, API 579-1/ASME FFS-1.


2011 ◽  
Vol 105 (4) ◽  
pp. 1432-1443 ◽  
Author(s):  
Christiane Linster ◽  
Qiang Nai ◽  
Matthew Ennis

The mammalian main olfactory bulb receives a significant noradrenergic input from the locus coeruleus. Norepinephrine (NE) is involved in acquisition of conditioned odor preferences in neonatal animals, in some species-specific odor-dependent behaviors, and in adult odor perception. We provide a detailed review of the functional role of NE in adult rodent main olfactory bulb function. We include cellular, synaptic, network, and behavioral data and use computational simulations to tie these different types of data together.


Sign in / Sign up

Export Citation Format

Share Document