A Study of the Effect of Growth Rate and Annealing on GaN Buffer Layers on Sapphire

1995 ◽  
Vol 395 ◽  
Author(s):  
J.C. Ramer ◽  
K. Zheng ◽  
C.F. Kranenberg ◽  
M. Banas ◽  
S.D Hersee

ABSTRACTUsing atomic force microscopy (AFM) and X-ray diffraction (XRD) we have determined that on [0001] oriented sapphire, the GaN buffer layer shows a degree of crystallinity that is dependent on growth rate. Annealing studies show evolution of the crystallinity and the emergence of a preferred orientation. Also, substrate orientation is found to influence the buffer layer crystallinity. Based on this work and previous results, we propose that the GaN buffer layer growth can be described by the Stranski-Krastanov growth process.

2009 ◽  
Vol 1165 ◽  
Author(s):  
Hakim Marko ◽  
Adam Hultqvist ◽  
Charlotte Platzer-Björkman ◽  
Sébastien Noël ◽  
John Kessler

AbstractCo-evaporated CuIn0,5Ga0,5Se2 thin film solar cells were grown using a sequential Cu-Poor/Rich/Poor process (CUPRO). During the growth process, the substrate temperature was either kept constant at 570 °C (iso-CUPRO) or decreased during the first step to either 360 or 430 or 500 °C (bi-CUPRO). According to atomic force microscopy (AFM) measurements, the lower the temperature is in the first step the smoother the final CIGS surface becomes. By decreasing the first step temperature, cross-section scanning electron microscopy (SEM) and θ-2θ x-ray diffraction (XRD) do not reveal clearly any important changes of morphology and crystallographic preferred orientation. SLG/Mo/CIGS/Buffer layer/i-ZnO/ZnO:Al/grid(Ni/Al/Ni) solar cells with either a chemical bath deposited CdS or an atomic layer deposited Zn(O,S) buffer layer were fabricated. For both buffer layers, the bi-CUPRO processes lead to higher efficiencies. Besides, using Zn(O,S), the electronic collection was improved for the infrared spectrum as well as for the ultraviolet spectrum. This resulted in efficiencies close to 14,5% for the Zn(O,S) cells.


1999 ◽  
Vol 572 ◽  
Author(s):  
Stefan Zollner ◽  
Atul Konkar ◽  
R. B. Gregory ◽  
S. R. Wilson ◽  
S. A. Nikishin ◽  
...  

ABSTRACTWe measured the ellipsometric response from 0.7–5.4 eV of c-axis oriented AlN on Si (111) grown by molecular beam epitaxy. We determine the film thicknesses and find that for our AlN the refractive index is about 5–10% lower than in bulk AlN single crystals. Most likely, this discrepancy is due to a low film density (compared to bulk AlN), based on measurements using Rutherford backscattering. The films were also characterized using atomic force microscopy and x-ray diffraction to study the growth morphology. We find that AlN can be grown on Si (111) without buffer layers resulting in truely two-dimensional growth, low surface roughness, and relatively narrow x-ray peak widths.


2003 ◽  
Vol 798 ◽  
Author(s):  
Zachary J. Reitmeier ◽  
Robert F. Davis

ABSTRACTAlN films and GaN films with AlN buffer layers were deposited via metalorganic vapor phase epitaxy on Si(111) substrates previously exposed to trimethylaluminum for increasing times. Atomic force microscopy (AFM) was used to determine the influence of Al pre-flow time on the nucleation and surface morphology of the AlN and GaN films. When preceded by a 10 second Al pre-flow, AlN films feature an increased and more uniform nucleation density as compared to films deposited without Al pre-flows. Ten second Al pre-flows were also found to result in a reduction of the RMS roughness for 100 nm thick AlN films from 3.6 nm to 1.0 nm. AFM of 0.5 μm thick GaN films deposited on AlN buffers with varying pre-flow times showed reduced roughness and decreased pit density when using Al pre-flows of 10 or 20 seconds. High resolution x-ray diffraction of the GaN films showed a reduction in the average full-width halfmaximum (FWHM) of the GaN (00.2) reflection from 1076 arcsec to 914 arcsec when the AlN buffer layer was initiated with a 10 second Al pre-flow. Increasing the pre-flow time to 20 seconds and 30 seconds resulted in average (00.2) FWHM values of 925 arcsec and 928 arcsec, respectively. Similar behavior of the peak widths was observed for the (30.2) and (10.3) reflections when the pre-flow times were varied from 0 to 30 seconds.


2007 ◽  
Vol 1008 ◽  
Author(s):  
Zhendong Hong ◽  
Alexandre Mello ◽  
Tomohiko Yoshida ◽  
Lan Luan ◽  
Paula H. Stern ◽  
...  

AbstractHydroxyapatite coatings have been widely recognized for their biocompatibility and utility in promoting biointegration of implants in both osseous and soft tissue. Conventional sputtering techniques have shown some advantages over the commercially available plasma spraying method; however, the as-sputtered coatings are usually non-stoichiometric and amorphous which can cause some serious problems such as poor adhesion and excessive coating dissolution rate. A versatile right-angle radio frequency magnetron sputtering (RAMS) approach has been developed to deposit HA coatings on various substrates at low power levels. Using this alternative magnetron geometry, as-sputtered HA coatings are nearly stoichiometric, highly crystalline, and strongly bound to the substrate, as evidenced by analyses using x-ray diffraction (XRD), atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). In particular, coatings deposited on oriented substrates show a polycrystalline XRD pattern but with some strongly preferred orientations, indicating that HA crystallization is sensitive to the nature of the substrate. Post deposition heat treatment under high temperature does not result in a marked improvement in the degree of crystallinity of the coatings. To study the biocompatibility of these coatings, murine osteoblast cells were seeded onto various substrates. Cell density counts using fluorescence microscopy show that the best osteoblast proliferation is achieved on an HA RAMS-coated titanium substrate. These experiments demonstrate that RAMS is a promising coating technique for biomedical applications.


2010 ◽  
Vol 660-661 ◽  
pp. 1087-1092 ◽  
Author(s):  
Danieli A.P. Reis ◽  
João Paulo Barros Machado ◽  
G.V. Martins ◽  
Carlos de Moura Neto ◽  
M.J.R. Barboza ◽  
...  

The present study is about the effect of oxide layers in creep of Ti-6Al-4V alloy, in different atmospheres (air, nitrogen and argon). Ti-6Al-4V alloy was treated during 24 hours in a thermal treatment furnace at 600°C in different atmospheres (argon, nitrogen and air). The samples were analyzed by High Resolution X-Ray Diffraction, Scanning Electronic Microscopy (SEM), Atomic Force Microscopy (AFM) and microhardness test. The polished samples of Ti-6Al-4V allloy were treated during 24 hours at 600°C and the oxidation behavior in each case using argon, nitrogen and air atmospheres was observed. The oxidation was more aggressive in air atmosphere, forming TiO2 film in the surface. The oxidation produced a weight gain through the oxide layer growth and hardening by oxygen dissolution. Ti-6Al-4V alloy specimens also were produced in order to test them in creep, at 250 MPa and 600°C, with argon, nitrogen and air atmospheres. When the Ti-6Al-4V alloy was tested under argon and nitrogen atmospheres oxidation effects are smaller and the behavior of the creep curves shows that the creep life time was better in atmospheres not so oxidant. It is observed a decreasing of steady state creep in function of the oxidation process reduction. It is shown that, for the Ti-6Al-4V alloy, their useful life is strongly affected by the atmosphere that is submitted, on account of the oxidation suffered by the material.


1999 ◽  
Vol 595 ◽  
Author(s):  
Olivier Parillaud ◽  
Volker Wagner ◽  
Hans-Jörg Bühlmann ◽  
François Lelarge ◽  
Marc Ilegems

AbstractWe present preliminary results on gallium nitride growth by HVPE on C-plane sapphire with 2, 4 and 6 degrees misorientation towards M and A directions. A nucleation GaN buffer layer is deposited prior the growth by MOVPE. Surface morphology and growth rates are compared with those obtained on exact C-plane oriented sapphire, for various growth conditions. As expected, the steps already present on the substrate surface help to initiate a directed step-flow growth mode. The large hillocks, which are typical for HVPE GaN layers on (0001) sapphire planes, are replaced by more or less parallel macro-steps. The width and height of these steps, due to step bunching effect, depend directly on the angle of misorientation and on the growth conditions, and are clearly visible by optical or scanning electron microscopy. Atomic force microscopy and X-ray diffraction measurements have been carried out to quantify the surface roughness and crystal quality.


2006 ◽  
Vol 911 ◽  
Author(s):  
M. Reyes ◽  
Y. Shishkin ◽  
S. Harvey ◽  
S. E. Saddow

AbstractGrowth rates from 10 to 38 μm/h were achieved for heteroepitaxial 3C-SiC on Si (100) substrates by using the propane-silane-hydrogen gas chemistry with HCl as a growth additive. A low-pressure horizontal hot-wall CVD reactor was employed to perform the deposition. The growth rate dependences on silane mole fraction, the process pressure and the growth time were determined experimentally. The growth rate dependence on silane mole fraction was found to follow a linear relationship. The 3C-SiC films were characterized by Normaski Optical Microscopy, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, Atomic Force Microscopy and X-ray Diffraction. The X-ray rocking curve taken on the (002) diffraction plane displayed a FWHM of 360 arcsec which indicates that the films are monocrystalline.


2007 ◽  
Vol 124-126 ◽  
pp. 181-184
Author(s):  
Mikinori Ito ◽  
Kazuaki Sawada ◽  
Makoto Ishida

Epitaxial Pt films were grown on γ-Al2O3/Si (111) substrate by RF-magnetron sputtering. The γ-Al2O3 buffer layers were grown epitaxially using molecular beam epitaxy. The films were characterized by reflection high-energy electron diffraction (RHEED), X-ray diffraction (XRD) and atomic force microscopy (AFM). The results of XRD showed that high-quality Pt films were obtained at around 560°C. In addition, the Pt films exhibited a very smooth surface with the root-mean-square (rms) surface roughness is about 0.4 nm.


2000 ◽  
Vol 5 (S1) ◽  
pp. 124-130 ◽  
Author(s):  
Olivier Parillaud ◽  
Volker Wagner ◽  
Hans-Jörg Bühlmann ◽  
François Lelarge ◽  
Marc Ilegems

We present preliminary results on gallium nitride growth by HVPE on C-plane sapphire with 2, 4 and 6 degrees misorientation towards M and A directions. A nucleation GaN buffer layer is deposited prior the growth by MOVPE. Surface morphology and growth rates are compared with those obtained on exact C-plane oriented sapphire, for various growth conditions. As expected, the steps already present on the substrate surface help to initiate a directed step-flow growth mode. The large hillocks, which are typical for HVPE GaN layers on (0001) sapphire planes, are replaced by more or less parallel macro-steps. The width and height of these steps, due to step bunching effect, depend directly on the angle of misorientation and on the growth conditions, and are clearly visible by optical or scanning electron microscopy. Atomic force microscopy and X-ray diffraction measurements have been carried out to quantify the surface roughness and crystal quality.


2006 ◽  
Vol 527-529 ◽  
pp. 307-310 ◽  
Author(s):  
M. Reyes ◽  
M. Waits ◽  
S. Harvey ◽  
Y. Shishkin ◽  
Bruce Geil ◽  
...  

A hetero-epitaxial 3C-SiC growth process in a low-pressure hot-wall CVD reactor has been developed on planar Si (100) substrates. The growth rate achieved for this process was about 10 μm/h. The process consists of silane/propane/hydrogen chemistry with HCl used as a growth additive to increase the growth rate. 3C-SiC has also been grown on 22, 52 and 123 +m deep etched MEMS structures formed by DRIE of (100) Si at a rate of about 8 +m/h. Secondary electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) were used to analyze the quality of the 3C-SiC films.


Sign in / Sign up

Export Citation Format

Share Document