Thermal Stability in Pd-Based Contacts to p-Type In0.53Ga0.47as Characterized by Rbs

1995 ◽  
Vol 406 ◽  
Author(s):  
P. W. Leech ◽  
P. Ressel ◽  
G. K. Reeves ◽  
W. Zhou ◽  
E. Kuphal

AbstractThe resistivity and interfacial characteristics of Pd/Zn/Pd/Au and Pd/Zn/Au/LaBd6/Au contacts to p-In0.53Ga0.47As have been investigated. Annealing of the contacts at 375–425°C yielded a minimum in specific contact resistance, p,, of 2 × 10-7 Δ cm2 for the Pd/Zn/Pd/Au contacts and 1 Δ cm2 for the Pd/Zn/Au/LaB6/Au configuration. This is the lowest reported measurement of pc for an ohmic contact to p-In0.53Ga0.47As doped to ≤1 × 1019 cm−3. In the Pd/Zn/Au/LaB6/Au scheme, the minimum in pc was the same irrespective of whether the Zn was incorporated as a structural layer or as Zn ions implanted into the interfacial Pd prior to metallization. The effect of thickness of the Zn layer on pc has been determined for the Pd/Zn/Au/LaB6/Au scheme. RBS measurements have shown that during annealing, the LaB6 layer acted as a barrier to the indiffusion of Au and to the degradation of the In0.53Ga0.47As substrate.

2009 ◽  
Vol 12 (9) ◽  
pp. H315 ◽  
Author(s):  
Ray-Ming Lin ◽  
Yi-Lun Chou ◽  
Wan-Ching Tseng ◽  
Chia-Lung Tsai ◽  
Jen-Chih Li ◽  
...  

1999 ◽  
Vol 595 ◽  
Author(s):  
Mi-Ran Park ◽  
Wayne A. Anderson ◽  
Seong-Ju Park

AbstractA low resistance Ohmic contact to p-type GaN is essential for reliable operation of electronic and optoelectronic devices. Such contacts have been made using Ni/Au and Pd / Au contacts to p-type Mg-doped GaN (1.41×1017 cm−3) grown by metalorganic chemical vapor deposition ( MOCVD ) on ( 0001 ) sapphire substrates. Thermal evaporation was used for the deposition of those metals followed by annealing at temperatures of 400 ∼ 700 °C in an oxygen and nitrogen mixed gas ambient, then subsequently cooled in liquid nitrogen which reduced the specific contact resistance from the range of 9.46∼2.80×10−2 ωcm2 to 9.84∼2.65×10−4 ωcm2 for Ni/Au and from the range of 8.35∼5.01×10−4 ωcm2 to 3.34∼1.80×10−4 ωcm2 for Pd/Au. The electrical characteristics for the contacts were examined by the current versus voltage curves and the specific contact resistance was determined by use of the circular transmission line method (c-TLM). The effects of the cryogenic process on improving Ohmic behavior (I-V linearity) and reducing the specific contact resistance will be discussed from a microstructural analysis which reveals the metallurgy of Ohmic contact formation.


2000 ◽  
Vol 5 (S1) ◽  
pp. 901-907
Author(s):  
Mi-Ran Park ◽  
Wayne A. Anderson ◽  
Seong-Ju Park

A low resistance Ohmic contact to p-type GaN is essential for reliable operation of electronic and optoelectronic devices. Such contacts have been made using Ni/Au and Pd / Au contacts to p-type Mg-doped GaN (1.41×1017 cm−3) grown by metalorganic chemical vapor deposition ( MOCVD ) on ( 0001 ) sapphire substrates. Thermal evaporation was used for the deposition of those metals followed by annealing at temperatures of 400 ∼ 700 °C in an oxygen and nitrogen mixed gas ambient, then subsequently cooled in liquid nitrogen which reduced the specific contact resistance from the range of 9.46∼2.80×10−2 Ωcm2 to 9.84∼2.65×10−4 Ωcm2 for Ni/Au and from the range of 8.35∼5.01×10−4 Ωcm2 to 3.34∼1.80×10−4 Ωcm2 for Pd/Au. The electrical characteristics for the contacts were examined by the current versus voltage curves and the specific contact resistance was determined by use of the circular transmission line method (c-TLM). The effects of the cryogenic process on improving Ohmic behavior (I-V linearity) and reducing the specific contact resistance will be discussed from a microstructural analysis which reveals the metallurgy of Ohmic contact formation.


1997 ◽  
Vol 482 ◽  
Author(s):  
Ja-Soon Jang ◽  
Hyo-Gun Kim ◽  
Kyung-Hyun Park ◽  
Chang-Sub Um ◽  
Il-Ki Han ◽  
...  

AbstractWe report a new Ni/Pt/Au (20/30/80 nm) metallization scheme to achieve a low ohmic contacts to p-type GaN with a carrier concentration of 9.4 × 1016 cm-3. A Mg-doped GaN layer (0.5 μm) was grown on (0001) sapphire substrate by metalorganic chemical vapor deposition (MOCVD). All metal thin films were deposited on the p-GaN layer in an electron-beam evaporation system. Samples were annealed by a rapid thermal annealing (RTA) process at a range of temperatures from 300 °C to 850 °C under a flowing Ar atmosphere. A circulartransmission line model (c-TLM) was employed to calculate the specific contact resistance, and current-voltage (I-V) data were measured with HP4155A. The Ni/Pt/Au contacts without the annealing process showed nearly rectifying characteristics. The ohmic contacts were formed on the samples annealed at 500 °C for 30 sec and the I-V data showed a linear behavior. The specific contact resistance was 2.1 × 10-2 Ωcm2. However with increasing the annealing temperature above 600 °C, ohmic contacts were again degraded. Auger electron spectroscopy (AES) depth profiles were used to investigate the interfacial reactions between the trilayer and GaN. AES results suggested that Pt plays a significant role in forming ohmic contact as an acceptor at the interface. Atomic force microscope (AFM) also showed that the samples with good ohmic contact have very smooth surface.


1994 ◽  
Vol 337 ◽  
Author(s):  
Patrick W Leech ◽  
Geoffrey K. Reeves

ABSTRACTThe electrical properties of Pd/Zn/Pd/Au based ohmic contacts to p-type In0 47Ga0 53As/ InP with an interposed superlattice of 50Å In047Gao 53As/ 50 Å InP have been investigated. In this study, several configurations of the Pd/Zn/Pd/Au metallization were fabricated with varying thicknesses of the Zn and interfacial Pd layers in the range 0 to 400 Å. The lowest values of specific contact resistance, ρc, were 1.2 x 10-5 Ω cm2 as-deposited and 7.5 x 106 Ω cm2 for samples annealed at 500 °C. In the as-deposited structures, ρc was reduced by an increase in thickness of both the Zn and Pd layers to 300 Å. For annealed samples, a critical thickness of the Zn ≥ 50 Å and Pd ≥ 100 Å layers was required in order to significantly reduce the magnitude of ρc. These results are consistent with a model of Pd/Zn contacts based on Zn doping of the interface. Studies of thermal stability of the contacts at 400 °C and 500 °C have shown that the Zn/Pd/Au and Pd/Zn/Pd/Au configurations were significanty lower in ρc at extended ageing times than the Pd/Au contacts.


2014 ◽  
Vol 806 ◽  
pp. 57-60
Author(s):  
Nicolas Thierry-Jebali ◽  
Arthur Vo-Ha ◽  
Davy Carole ◽  
Mihai Lazar ◽  
Gabriel Ferro ◽  
...  

This work reports on the improvement of ohmic contacts made on heavily p-type doped 4H-SiC epitaxial layer selectively grown by Vapor-Liquid-Solid (VLS) transport. Even before any annealing process, the contact is ohmic. This behavior can be explained by the high doping level of the VLS layer (Al concentration > 1020 cm-3) as characterized by SIMS profiling. Upon variation of annealing temperatures, a minimum value of the Specific Contact Resistance (SCR) down to 1.3x10-6 Ω.cm2 has been obtained for both 500 °C and 800 °C annealing temperature. However, a large variation of the SCR was observed for a same process condition. This variation is mainly attributed to a variation of the Schottky Barrier Height.


1993 ◽  
Vol 318 ◽  
Author(s):  
Patrick W. Leech ◽  
Geoffrey K. Reeves

ABSTRACTOhmic contacts to p-type InP with an In0.47Ga0.53As buffer layer and an interposed superlattice of 50 Å In0.47Ga0.53As/ 50 Å InP have been investigated. Initial studies of contacts to In0.47Ga0.53As/ InP without the superlattice structure have shown that Pd/Zn/Pd/Au metallization produced a lower specific contact resistance (pc = 1.1 × 10−4 Ω cm2) than Pd/Ge/Au, and over a wider range of anneal temperature than Au/Zn/Au. The incorporation of the superlattice in the p-In0.47Ga0.53As/ InP structure resulted in Pd/Zn/Pd/Au contacts with pc of 3.2 × 10−5 Ω cm2 as-deposited and 7.5 × 10−6 Ω.cm2 after a 500 °C anneal. The presence of Pd/Zn in the metallization was shown as important in reducing pc. Significant intermixing of the metal layers and In0.47Ga0.53As occured at ≥ 350 °C, as revealed by Rutherford backscattering spectrometry.


2006 ◽  
Vol 21 (12) ◽  
pp. 1738-1742 ◽  
Author(s):  
L Lewis ◽  
P P Maaskant ◽  
B Corbett

2005 ◽  
Vol 20 (2) ◽  
pp. 456-463 ◽  
Author(s):  
Jiin-Long Yang ◽  
J.S. Chen ◽  
S.J. Chang

The distribution of Au and NiO in NiO/Au ohmic contact on p-type GaN was investigated in this work. Au (5 nm) films were deposited on p-GaN substrates by magnetron sputtering. Some of the Au films were preheated in N2 ambient to agglomerate into semi-connected structure (abbreviated by agg-Au); others were not preheated and remained the continuous (abbreviated by cont-Au). A NiO film (5 nm) was deposited on both types of samples, and all samples were subsequently annealed in N2 ambient at the temperatures ranging from 100 to 500 °C. The surface morphology, phases, and cross-sectional microstructure were investigated by scanning electron microscopy, glancing incident angle x-ray diffraction, and transmission electron microscopy. I-V measurement on the contacts indicates that only the 400 °C annealed NiO/cont-Au/p-GaN sample exhibits ohmic behavior and its specific contact resistance (ρc) is 8.93 × 10−3 Ω cm2. After annealing, Au and NiO contact to GaN individually in the NiO/agg-Au/p-GaN system while the Au and NiO layers become tangled in the NiO/cont-Au/p-GaN system. As a result, the highly tangled NiO-Au structure shall be the key to achieve the ohmic behavior for NiO/cont-Au/p-GaN system.


1999 ◽  
Vol 4 (S1) ◽  
pp. 684-690
Author(s):  
X. A. Cao ◽  
F. Ren ◽  
J. R. Lothian ◽  
S. J. Pearton ◽  
C. R. Abernathy ◽  
...  

Sputter-deposited W-based contacts on p-GaN (NA∼1018 cm−3) display non-ohmic behavior independent of annealing temperature when measured at 25°C. The transition to ohmic behavior occurs above ∼250°C as more of the acceptors become ionized. The optimum annealing temperature is ∼700°C under these conditions. These contacts are much more thermally stable than the conventional Ni/Au metallization, which shows a severely degraded morphology even at 700°C. W-based contacts may be ohmic as-deposited on very heavily doped n-GaN, and the specific contact resistance improves with annealing up to ∼900°C.


Sign in / Sign up

Export Citation Format

Share Document