Increased Refractive Indices in Rare Earth Doped InP and In0.53 Ga0.47 as Thin Films

1996 ◽  
Vol 422 ◽  
Author(s):  
B. J. H. Stadler ◽  
J. P. Lorenzo

AbstractRare earth (Gd, Eu, Er) doped InGaAs and InP layers were grown by liquid phase epitaxy (LPE). The refractive index of these layers was observed to increase with the addition of the rare earth ions. The observed increase could not be explained by changes in host composition as typically calculated from changes in lattice parameter. In fact, the refractive index was seen to increase (∼0.25) by an order of magnitude more than would be expected by the change in the lattice parameter (∼0.02). The increased refractive indices of InP layers due to Er-doping enabled waveguiding. These findings suggest that optically active waveguide devices can be fabricated from semiconducting hosts by simple rare earth doping.

2005 ◽  
Vol 886 ◽  
Author(s):  
Kiyoshi Fuda ◽  
Shigeaki Sugiyama

ABSTRACTWe investigated the effects of doping of rare-earth ions (Ce, Pr, Nd, Sm, and Eu) on the thermoelectric properties of ZnO, especially Seebeck coefficient in the temperature range from 100 to 800 °C. The data were scattered more or less depending on the doping species, but it was commonly found that the rare-earth doped samples showed higher Seebeck coefficients with compared to those for Al-doped samples. The highest values were observed for Nd-doped one ranging from -360 to -400μVK−1 in the temperature range observed, the lowest ones for Pr-doped one ranging from -250 to -310 μVK−1, whereas those for Al-doped one ranging from -80 to -140 μVK−1. It should also be pointed out that the power factor at 100 °C for Pr-doped ZnO was twice or more as much as that for Al-doped one. From the results it seemed that rare earth doping is effective for enhancement of thermoelectric power of ZnO.


1995 ◽  
Vol 392 ◽  
Author(s):  
B. J. Stadler ◽  
K. Vaccaro ◽  
A. Davis ◽  
E. A. Martin ◽  
G. O. Ramseyer ◽  
...  

AbstractWe have investigated the properties of rare earth-doped InGaAsP thin films with special interest in magneto-optical device applications. Magneto-optical properties have been used in optical systems as isolators, waveguides, and switches. These materials and devices can be used to expand the functionality of InP opto-electronic integrated circuits (OEICs). Thin films of InP, InGaAs, and InGaAsP, grown by liquid phase epitaxy, were lattice matched to the (100) InP substrates. The films were n-type, with the carrier concentration decreasing by an order of magnitude in the doped films due to gettering by the rare earth elements. The doped films contained 2.6×1018 - 1.5×1020 cm−3 rare earth elements, which were observed to segregate toward the film/melt interface in the more highly doped films. A broad photoluminescence was observed at 1.52 μm in the Er-doped films. The Verdet constant was measured through the sample thickness, and the substrate signal dominated the measurements. However, the measured values were in agreement with published values for InP, which gives an indication of the films' host value. The Verdet constants increased from 4 to 7 deg/T/mm as the wavelength decreased toward the band edge. The band edges of our samples were 0.93, 1.62, and 1.30 μm, respectively. Rare earth dopants were observed to raise the refractive index of the InP films, and waveguiding at 1.3 μm was achieved in the rare earth-doped InP films and in the InGaAsP films.


MRS Advances ◽  
2019 ◽  
Vol 4 (33-34) ◽  
pp. 1895-1904
Author(s):  
Lihong Su ◽  
Kan Chen ◽  
Yongqiang Liu ◽  
ZiAo Zou ◽  
Lihua Su

Abstract:Ultraviolet light-emitting diodes (UVLEDs) with phosphor materials have considerable advantages over traditional illumination devices. Doping with rare earth ions can modify the optical spectrum of phosphor materials, but rare earths are very expensive. Thus, replacing rare earths with a common material would provide a great potential for the wide application in the future. In this study, we discovered that a novel type of semiconductor nanometre powder, namely manganese cobalt nickel copper oxide (MCNC), is able to emit blue-green wavelength spectrum when exited by 365-400nmUVLED. In addition, MCNC shows less attenuation of luminescence efficiency than other UVLED phosphor materials doped with rare earths with temperature increase. It is thus concluded that MCNC is a promising low-cost material to replace rare earths to adjust the optical spectrum wavelength of UVLED. This is the first time that nano-scale MCNC is reported to possess the property to change the optical spectrum wavelength of UVLED. This provides a new mechanical and nanometer phosphor material without rare earth doping to shift the wavelength spectrum.


Author(s):  
P. Gu ◽  
G. Yang ◽  
R.F. Klie

Cerium oxide doped with various rare earth metals is often used as a support for nano-sized gold particles, and demonstrates to be a promising catalyst for the water gas shift reaction at low temperatures. Many factors are hypothesized to affect the activity of this heterogeneous catalyst, including its loading with gold, the rare-earth dopant, the support and Au particle size, and leaching of the sample. In this study, we examined several Au/CeO2-based catalyst samples, including 2.4% Au/(Ce,Gd)O2, 1.8% Au/(Ce,La)O2 leached, 0.5% Au/(Ce,Gd)O2 leached, and 0.75% Au/CeO2 utilizing analytical transmission electron microscopy. The effects of Au and rare-earth doping on the ceria lattice parameter were investigated, and it was determined that there are no significant variations in the particle's structure or lattice-spacing. Furthermore, the particle sizes of each of the four samples were investigated concluding that although the 1.8% Au/(Ce,La)O2 leached sample has a slightly larger particle size, and the 2.4% Au/(Ce,Gd)O2 sample has a slightly smaller particle size, the differentiation is not adequate to be accountable for the radical distinction in catalytic activity.


ChemCatChem ◽  
2013 ◽  
Vol 6 (1) ◽  
pp. 237-244 ◽  
Author(s):  
Xiuyun Wang ◽  
Zhilin Chen ◽  
Yuling Wang ◽  
Ruihu Wang

1991 ◽  
Vol 244 ◽  
Author(s):  
Glen M. Williams ◽  
Jacqueline A. Ruller ◽  
E. Joseph Friebele

ABSTRACTPermanent refractive index gratings were holographically photowritten into rare earth doped glasses using the 488 rn line of a Ar Ion laser. The rare earths Pr3+, Tb3+, and Eu2+ were examined. Experiments were performed to elucidate the mechanism responsible for the photoinduced index change. A model is presented in which the index change is accomplished through photoionization of the rare earth dopant and subsequent trapping of the free carrier. The viability of these materials for use in optical fiber grating devices is discussed.


1991 ◽  
Vol 244 ◽  
Author(s):  
L. R. Copeland ◽  
W. A. Reed ◽  
M. R. Shahriari ◽  
T. Iqbal ◽  
P. Hajcak ◽  
...  

ABSTRACTRare earth ions can easily be incorporated into fluoride glasses in moderate to large concentrations and, due to their low phonon energy, these glasses appear to have many advantages over oxide glasses as hosts for rare earth ions used in optical amplifiers and lasers. We have therefore investigated the optical properties of Pr3+, Pr3+/Yb3+ and Pr3+/Yb3+/Lu3+ doped bulk AIF3-based glass samples as a function of rare earth ion concentration. We find that the addition of 2 wt% of Yb increases the fluorescence of Pr3+ at 1.32 μm by a factor of 35 when excited with 488 nm radiation. The fluorescence intensity and excited state lifetimes are found to be comparable to those measured for Pr in a ZBLAN host. Since it has also been demonstrated that optical fibers drawn from AIF3-based glasses exhibit relatively low loss (< 0.05 dB/m) and posses superior chemical durability compared to other fluotide glasses, it is possible that AIF3 glasses may become the fluoride glass of choice for practical fiber laser and amplifier applications.


Sign in / Sign up

Export Citation Format

Share Document