The Impact of Pregrowth Conditions and Substrate Polytype on SiC Epitaxial Layer Morphology

1996 ◽  
Vol 423 ◽  
Author(s):  
A. A. Burk ◽  
L. B. Rowland ◽  
G. Augustine ◽  
H. M. Hobgood ◽  
R. H. Hopkins

Abstract4H and 6H-SiC epitaxial layers exhibit characteristic morphological defects caused by process and substrate interferences with the a-axis directed step-flow growth. 4H-SiC is shown to typically exhibit worse morphology than 6H-SiC for a given off-axis orientation. SiC epitaxial layer defects are significantly reduced by the optimization of growth conditions and substrate surface preparation. The remaining highly variable defects are shown to emanate from the substrate surface with densities of ≥1000 cm−2

1999 ◽  
Vol 595 ◽  
Author(s):  
Olivier Parillaud ◽  
Volker Wagner ◽  
Hans-Jörg Bühlmann ◽  
François Lelarge ◽  
Marc Ilegems

AbstractWe present preliminary results on gallium nitride growth by HVPE on C-plane sapphire with 2, 4 and 6 degrees misorientation towards M and A directions. A nucleation GaN buffer layer is deposited prior the growth by MOVPE. Surface morphology and growth rates are compared with those obtained on exact C-plane oriented sapphire, for various growth conditions. As expected, the steps already present on the substrate surface help to initiate a directed step-flow growth mode. The large hillocks, which are typical for HVPE GaN layers on (0001) sapphire planes, are replaced by more or less parallel macro-steps. The width and height of these steps, due to step bunching effect, depend directly on the angle of misorientation and on the growth conditions, and are clearly visible by optical or scanning electron microscopy. Atomic force microscopy and X-ray diffraction measurements have been carried out to quantify the surface roughness and crystal quality.


2000 ◽  
Vol 639 ◽  
Author(s):  
Lianghong Liu ◽  
Bei Liu ◽  
Ying Shi ◽  
J. H. Edgar

ABSTRACTThe effect of substrate preparation on the sublimation growth of AlN on 6H-SiC was investigated at about 1800°C and 400 torr. Short and long-time sublimation growths of AlN indicated that the nucleation, growth mode, and defects formed depended on the substrate surface preparation. Growth on an off-axis 6H-SiC substrate with 6H-SiC epilayer was in the step flow growth mode in contrast to the island growth mode on as-received substrates, while the 2-D growth was achieved on substrates first coated with an AlN epitaxial layer. Cracks due to the lattice and mainly large thermal expansion coefficient mismatch were always observed in the deposited AlN crystal, as characterized by SEM and optical microscopy.


2000 ◽  
Vol 5 (S1) ◽  
pp. 124-130 ◽  
Author(s):  
Olivier Parillaud ◽  
Volker Wagner ◽  
Hans-Jörg Bühlmann ◽  
François Lelarge ◽  
Marc Ilegems

We present preliminary results on gallium nitride growth by HVPE on C-plane sapphire with 2, 4 and 6 degrees misorientation towards M and A directions. A nucleation GaN buffer layer is deposited prior the growth by MOVPE. Surface morphology and growth rates are compared with those obtained on exact C-plane oriented sapphire, for various growth conditions. As expected, the steps already present on the substrate surface help to initiate a directed step-flow growth mode. The large hillocks, which are typical for HVPE GaN layers on (0001) sapphire planes, are replaced by more or less parallel macro-steps. The width and height of these steps, due to step bunching effect, depend directly on the angle of misorientation and on the growth conditions, and are clearly visible by optical or scanning electron microscopy. Atomic force microscopy and X-ray diffraction measurements have been carried out to quantify the surface roughness and crystal quality.


2017 ◽  
Vol 897 ◽  
pp. 287-290 ◽  
Author(s):  
Matthias Kocher ◽  
Michael Niebauer ◽  
Mathias Rommel ◽  
Volker Haeublein ◽  
Anton J. Bauer

Point contact current voltage (PCIV) measurements were performed on 4H-SiC samples, both for n- an p-doped epitaxial layers as well as samples with rather shallow doping profiles realized by N- or Al-implantation in a range from 1016 cm-3 to 1019 cm-3. Surface preparation and measurement parameters were investigated in order to determine their influence on the measured resistance profiles. Furthermore depth profile measurements were performed on both an epitaxial layer as well as on implanted samples. These depth profiles could be measured reproducibly and showed good agreement with expected profiles for Al-implanted samples as well as for epitaxial layer whereas for N-implanted samples deviations between measured and expected profiles could be observed. It could be proven that PCIV profiling technique is a promising method for characterizing doped profiles in 4H-SiC, especially on Al-implanted samples.


2001 ◽  
Vol 30 (3) ◽  
pp. 228-234 ◽  
Author(s):  
S. E. Saddow ◽  
T. E. Schattner ◽  
J. Brown ◽  
L. Grazulis ◽  
K. Mahalingam ◽  
...  

2012 ◽  
Vol 717-720 ◽  
pp. 247-250 ◽  
Author(s):  
Bernd Zippelius ◽  
Jun Suda ◽  
Tsunenobu Kimoto

In this paper the impact of high temperature annealing on the formation of intrinsic defects in 4H-SiC such as Z1/2 and EH6/7 was examined. Therefore, three epitaxial layers with various initial concentrations of the Z1/2- and EH6/7-centers (1011 – 1013 cm-3) were investigated. It turns out that depending on the initial defect concentration the high temperature annealing leads to a monotone increase of the Z1/2- and EH6/7-concentration in a temperature range from 1600 to 1750°C. For a defined temperature above these values, the resulting defect concentration is independent of the sample’s initial values. Beside the growth conditions themselves such as C/Si ratio the thermal post-growth processing has a severe impact on the carrier lifetime which must be taken into account during device fabrication.


2002 ◽  
Vol 749 ◽  
Author(s):  
J. Mysliveček ◽  
C. Schelling ◽  
F. Schäffler ◽  
G. Springholz ◽  
P. Šmilauer ◽  
...  

ABSTRACTScanning tunneling microscopy experiments show that the unstable growth morphology observed during molecular beam homoepitaxy on slightly vicinal Si(001) surfaces consists of straight step bunches. The instability occurs under step-flow growth conditions and vanishes both during low-temperature island growth and at high temperatures. An instability with the same characteristics is observed in a 2D Kinetic Monte Carlo model of growth with incorporated Si(001)-like diffusion anisotropy. This provides strong evidence that the diffusion anisotropy destabilizes growth on Si(001) and similar surfaces towards step bunching. This new instability mechanism is operational without any additional step edge barriers.


2012 ◽  
Vol 26 (15) ◽  
pp. 1250087 ◽  
Author(s):  
PATCHA CHATRAPHORN ◽  
CHANAKAN CHOMNGAM

Most studies of thin film growth simulations are performed on flat substrates. However, in reality, a substrate is usually miscut leading to a vicinal surface with a small tilt. The goal of this work is to study effects of an initial configuration of a miscut substrate on the grown film. The Das Sarma–Tamborenea model with modified diffusion rules is used for the simulations. The modification is done to allow variation in the surface diffusion length and mobility of adatoms. The results show that the optimum conditions that lead to step-flow growth are long diffusion length and small step height.


2006 ◽  
Vol 527-529 ◽  
pp. 147-152 ◽  
Author(s):  
Kazutoshi Kojima ◽  
Tomohisa Kato ◽  
Satoshi Kuroda ◽  
Hajime Okumura ◽  
Kazuo Arai

We have investigated the generation of new dislocations during the epitaxial growth of 4H-SiC layers. Dislocations were mainly propagated from the substrate into the epitaxial layer. However, it was found that some amount of new threading edge dislocations (TEDs) and basal plane dislocations (BPDs) were generated during the epitaxial growth. The generation of those dislocations appeared to depend on the in-situ H2 etching conditions, not the epitaxial growth conditions. By optimizing in-situ H2 etching condition, we were able to effectively suppress the generation of new dislocations during epitaxial growth, and obtain 4H-SiC epitaxial layers which have the equivalent etch pit density (EPD) to the substrates. Our additional investigation of the conversion of BPDs to TEDs revealed that its efficiency similarly depends on in-situ H2 etching. We were able to obtain a high conversion efficiency of 97 % by optimizing the in-situ H2 etching conditions before epitaxial growth.


2014 ◽  
Vol 778-780 ◽  
pp. 143-146
Author(s):  
Takashi Aigo ◽  
Wataru Itoh ◽  
Tatsuo Fujimoto ◽  
Takayuki Yano

In this paper, we present a comparison of defects in 4H-SiC epilayers grown on 4o off-axis (0001) and (000-1) substrates. It was confirmed using high sensitive surface observation and micro-Raman spectroscopy that the generation of epitaxial defects on (000-1) C-face substrates was less susceptible to substrate morphological defects such as pits than that on (0001) Si-face substrates and 'comet-like' defects on (000-1) C-faces were caused by the inclusion of 3C-SiC. Moreover, PL imaging observation showed that stacking fault densities decreased when increasing the growth temperature, and they increased when increasing the C/Si ratio, irrespective of the face polarity. The densities, however, were lower for C-faces at higher growth temperature and C/Si ratio. The present results indicated that C-faces were preferable to Si-faces to achieve smooth step-flow growth suppressing epitaxial defects and stacking faults, which were influenced by the substrate morphological defects and the fluctuation of C/Si ratio in the epitaxial growth.


Sign in / Sign up

Export Citation Format

Share Document