Spectrally Resolved Fill Factor Measurements on a-Si:H Based Solar Cell Structures

1996 ◽  
Vol 426 ◽  
Author(s):  
Michael Wagner ◽  
Dimitrios Peros ◽  
Stephan Guse ◽  
Markus Böhm

AbstractThis work presents essential differences in the fill factors (FF) of pin and nip solar cell structures based on hydrogenated amorphous silicon (a-Si:H). The nomenclature “pin’ (‘nip’ respectively) determines the deposition sequence of the single layers. Fill factor measurements are carried out with illumination through p- and n-layers at different wavelengths. The use of laser light provides a wide range of illumination levels and photo current densities of up to 14mA/cm2. The spectrally resolved FF measurements indicate an incorporation of dopants in the i-layer depending on the layer deposited first. Nip and pin structures generally show opposite FF dispersion when illuminated through the same layer. However, due to the slight n-conductivity of intrinsic a-Si:H material, a weak boron incorporation leads to a net charge compensation in the ilayer. In contrast to other investigations we do not find a significant deviation in the open circuit voltages of the pin and nip devices as long as the deposition parameters of the single layers are identical.

2013 ◽  
Vol 665 ◽  
pp. 330-335 ◽  
Author(s):  
Ripal Parmar ◽  
Dipak Sahay ◽  
R.J. Pathak ◽  
R.K. Shah

The solar cells have been used as most promising device to convert light energy into electrical energy. In this paper authors have attempted to fabricate Photoelectrochemical solar cell with semiconductor electrode using TMDCs. The Photoelectrochemical solar cells are the solar cells which convert the solar energy into electrical energy. The photoelectrochemical cells are clean and inexhaustible sources of energy. The photoelectrochemical solar cells are fabricated using WSe2crystal and electrolyte solution of 0.025M I2, 0.5M NaI, 0.5M Na2SO4. Here the WSe2crystals were grown by direct vapour transport technique. In our investigations the solar cell parameters like short circuit current (Isc) and Open circuit voltage (Voc) were measured and from that Fill factor (F.F.) and photoconversion efficiency (η) are investigated. The results obtained shows that the value of efficiency and fill factor of solar cell varies with the illumination intensities.


1989 ◽  
Vol 145 ◽  
Author(s):  
V. S. Sundaram ◽  
J. E. Avery ◽  
G. R. Girard ◽  
H. E. Hager ◽  
A. G. Thompson ◽  
...  

AbstractUsing an alternate arsenic source, namely, Tertiary Butyl Arsine, a concentrator GaAs solar cell has been grown in a low pressure metal organic chemical vapor deposition reactor. Under 72 sun, air mass 1.5 illumination, the cell had an open circuit voltage of 1.1 V, a fill factor of 83% and an overall efficiency of 21%.


2008 ◽  
Vol 1101 ◽  
Author(s):  
Chang-Wei Liu ◽  
Zingway Pei ◽  
Shu-Tong Chang ◽  
Ren-Yui Ho ◽  
Min-Wei Ho ◽  
...  

AbstractOne of the parameters that limit the efficiency of a thin film solar cell, especially the a-Si and the nc-Si solar cell is the cell thickness. Although thicker film can absorb most of the sun light, the optical generated carriers will recombination through the numerous gap states in the film that obtained lower short circuit current and fill factor. In the controversy, thinner film could not absorb enough sun light that also limit the short circuit current. In this works, we utilize nanowire structure to solve the conflict between the light absorption and the carrier transport. The designed structure has ZnO:Al nanowire array on the substrate. The p-i-n a-Si solar cell structure is grown along the surface of each ZnO: Al nanowire sequentially. Under sunlight illumination, the light is absorbed in the axis direction of the nanowire. However, the carrier transport is along the radial direction of the solar cell. Therefore, the long nanowire could absorb most of the solar light. In the mean time, the thickness of the solar cell still is thin enough for photo-generated carrier transport. The dependence of short circuit current, open circuit voltage and fill factor to the length, diameter and density of ZnO:Al nanowires were simulated.


2012 ◽  
Vol 569 ◽  
pp. 172-175
Author(s):  
Peng Wang ◽  
Li Bo Fan ◽  
Meng Yuan Yang ◽  
Zhen Hua Zhang ◽  
Xin Bing Zhu ◽  
...  

A new hybrid film solar cell was made with a structure of Glass/ITO/PbS/P3HT/Al. PbS film was prepared by a simple solid-solid reaction and poly(3-hexylthiophene) (P3HT) film was obtained by a spin coating method. The solar cells are photosensitive in a large spectral range (extending from near infrared to high energy side regions). Without any special treatment, the cell with an area of 0.15 cm2 has shown values of open-circuit voltage (Voc) of 85 mV and fill factor (FF) of 0.33 under an illumination intensity of 100 mW/cm2.


2005 ◽  
Vol 12 (01) ◽  
pp. 19-25 ◽  
Author(s):  
M. RUSOP ◽  
M. ADACHI ◽  
T. SOGA ◽  
T. JIMBO

Phosphorus-doped amorphous carbon (n-C:P) films were grown by r. f.-power-assisted plasma-enhanced chemical vapor deposition at room temperature using a novel solid red phosphorus target. The influence of phosphorus doping on material properties of n-C:P based on the results of simultaneous characterization are reported. Moreover, the solar cell properties such as series resistance, short circuit current density, open circuit current voltage, fill factor and conversion efficiency along with the spectral response are reported for the fabricated carbon-based n-C:P/p-Si heterojunction solar cell that was measured by standard measurement technique. The cells performances have been given in the dark I–V rectifying curve and I–V working curve under illumination when exposed to AM 1.5 illumination condition (100 mW/cm 2, 25°C). The maximum of open-circuit voltage (V oc ) and short-circuit current density (J sc ) for the cells are observed to be approximately 236 V and 7.34, mAcm 2 respectively for the n-C:P/p-Si cell grown at lower r. f. power of 100 W. The highest energy conversion efficiency (η) and fill factor (FF) were found to be approximately 0.84% and 49%, respectively. We have observed that the rectifying nature of the heterojunction structures is due to the nature of n-C:P films.


1993 ◽  
Vol 297 ◽  
Author(s):  
Yuan-Min Li

Recent efforts to optimize undoped, glow-discharge hydrogenated amorphous silicon-carbon alloys (a-SiC:H) with 1.9-2.0 eV bandgaps for solar cell applications are reviewed. Hydrogen dilution coupled with relatively low substrate temperatures (below 200 °C) have led to great improvements in the optical and phototransport properties of a-SiC:H films. The issue of alternative carbon feedstocks other than methane (CH4) will be explored. The improved a-SiC:H alloys have resulted in solar cells with high open circuit voltages (V∞ > 1.0 volt) and high fill factors (> 0.7). Further, the a-SiC:H solar cell instability upon prolonged light exposure has been much reduced. Correlation will be made between the properties of bulk undoped a-SiC:H films and the performance of p-i-nsingle junction solar cells using corresponding a-SiC:H thin i-layers.


1998 ◽  
Vol 507 ◽  
Author(s):  
Frank Siebke ◽  
Shigeo Yata ◽  
Yoshihiro Hishikawa ◽  
Makoto Tanaka

ABSTRACTWe investigated p-i-n solar cells with microcrystalline absorber but amorphous contact layers. Fill factor and open circuit voltage depend sensitively on the p/i interface. Using an optimized design of the p/i interface, cells with fill factors up to 65% and open circuit voltages of 0.45 V were deposited on amorphous p-layers. They are comparable to cells on micro- crystalline p-layers. A further increase of the open circuit voltage was achieved by variation of the p/i interface treatment but up to now it was accompanied by a decrease of the fill factor. We attribute this effect to a thin undoped amorphous layer at the p/i interface. Under non-optimized deposition conditions an amorphous instead of a microcrystalline silicon layer is grown at the p/i interface which can be detected by Raman measurements on cell structures. While the proper design of the p/i interface is crucial for the cell performance we did not observe significant differences between cells with amorphous and microcrystalline n-layers. The results reveal that the open circuit voltage is limited by the bulk properties of the undoped microcrystalline silicon.


Author(s):  
Y. Cui ◽  
J. Wang ◽  
S.R. Plissard ◽  
M. Trainor ◽  
T.T.T. Vu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document