Structure and Growth of N2O Gate Oxynitrides

1996 ◽  
Vol 428 ◽  
Author(s):  
K. A. Ellis ◽  
E. C. Carr ◽  
R. A. Buhrman

AbstractA series of investigations have been conducted into the properties of N2O silicon oxynitride gate dielectrics, and the various methods of their growth. One of the principle advantages of these oxides is their resistance to interface state generation. This is linked to the presense of nitrogen near the substrate interface, where it is triply bonded to silicon. It is also demonstrated that during N2O-based furnace growth, the total concentration of NOx species varies strongly with the flow rate of N2O. This has been correlated to the temperature profile of the furnace, which can be affected by the exothermic decomposition of N2O. This property has been exploited to controllably adjust the rate of nitrogen incorporation by up to a factor of three. Although nitrogen incorporation during furnace processing is generally stable, it is shown that atomic oxygen is capable of removing previously incorporated nitrogen. Sources of atomic oxygen include the decomposition of N2O during RTP treatment, N2O processing in a high flow rate furnace, or from ozone annealing.

1995 ◽  
Vol 387 ◽  
Author(s):  
L. K. Han ◽  
M. Bhat ◽  
J. Yan ◽  
D. Wristers ◽  
D. L. Kwong

AbstractThis paper reports on the formation of high quality ultrathin oxynitride gate dielectric by in-situ rapid thermal multiprocessing. Four such gate dielectrics are discussed here; (i) in-situ NO-annealed SiO2, (ii) N2O- or NO- or O2-grown bottom oxide/RTCVD SiO2/thermal oxide, (iii) N2O-grown bottom oxide/Si3N4/N2O-oxide (ONO) and (iv) N2O-grown bottom oxide/RTCVD SiO2/N2O-oxide. Results show that capacitors with NO-based oxynitride gate dielectrics, stacked oxynitride gate dielectrics with varying quality of bottom oxide (O2/N2O/NO), and the ONO structures show high endurance to interface degradation, low defect-density and high charge-to-breakdown compared to thermal oxide. The N2O-last reoxidation step used in the stacked dielectrics and ONO structures is seen to suppress charge trapping and interface state generation under Fowler-Nordheim injection. The stacked oxynitride gate dielectrics also show excellent MOSFET performance in terms of transconductance and mobility. While the current drivability and mobilities are found to be comparable to thermal oxide for N-channel MOSFET's, the hot-carrier immunity of N-channel MOSFET's with the N2O-oxide/CVD-SiO2/N2O-oxide gate dielectrics is found to be significantly enhanced over that of conventional thermal oxide.


1995 ◽  
Vol 387 ◽  
Author(s):  
S. C. Sun ◽  
C. H. Chen ◽  
J. C. Lou ◽  
L. W. Yen ◽  
C. J. Lin

AbstractIn this paper a new technique for the formation of high quality ultrathin gate dielectrics is proposed. Gate oxynitride was first grown in N2O and then annealed by in-situ rapid thermal NO-nitridation. This approach has the advantage of providing a tighter nitrogen distribution and a higher nitrogen accumulation at or near the Si-SiO2 interface than either N2O oxynitride or nitridation of SiO2 in the NO ambient. It is applicable to a wide range of oxide thickness because the initial rapid thermal N2O oxidation rate is slow but not as self-limited as NO oxidation. The resulting gate dielectrics have reduced charge trapping, lower stress-induced leakage current and significant resistance to interface state generation under electrical stress


1996 ◽  
Vol 428 ◽  
Author(s):  
Chao Sung Lai ◽  
Chung Len Lee ◽  
Tan Fu Lei ◽  
Tien Sheng Chao ◽  
Chun Hung Peng ◽  
...  

AbstractThe electrical characteristics of thin gate dielectrics prepared by low temperature (850 °C) two-step N20 nitridation (LTN) process are presented. The gate oxides were grown by wet oxidation at 800 °C and then annealed in N2O at 850 °C. The oxide with N2O anneal, even for low temperature (850 °C), had nitrogen incorporation at oxide/silicon interface. The charge trapping phenomena and interface-state generation (ΔDitm) induced by constant current stressing were reduced and charge-to-breakdown (Qbd) under constant current stressing was increased. This LTN oxynitride was used as gate dielectric for N-channel MOSFET, whose hot-canrier immunity was shown improved and reverse short channel effect (RSCE) was suppressed.


1989 ◽  
Vol 25 (20) ◽  
pp. 1354 ◽  
Author(s):  
G.Q. Lo ◽  
W.C. Ting ◽  
D.K. Shih ◽  
D.L.K. Wong

1999 ◽  
Vol 567 ◽  
Author(s):  
J. Sapjeta ◽  
M. L. Green ◽  
J. P. Chang ◽  
P. J. Silverman ◽  
T. W. Sorsch ◽  
...  

ABSTRACTThe greatest benefits of nitrogen incorporation into gate dielectrics may be obtained by placing nitrogen preferentially at the interfacial regions of the dielectric film. One method of distributing nitrogen in this manner is by using a three-step thermal process consisting of 1.) oxynitridation in NO, 2.) subsequent reoxidation in O2, and 3.) a final NO anneal. This study investigates the effect of NO processing on substrate/dielectric interface roughness and correlates that roughness with dielectric reliability. The initial NO-containing step can roughen the interface, as can subsequent reoxidation. Increased NO exposure yields a greater nitrogen content and a concomitant increase in interface roughness. These films show a degradation in charge to breakdown (Qbd) of at least an order of magnitude when compared with similarly prepared O2-oxide films. An O2/NO process produces films with interface roughness and Qbd comparable to that of pure SiO2, independent of nitrogen content. The oxynitride reliability depends on the exact scheme for incorporating nitrogen into SiO2.


Author(s):  
Zhicheng Wu ◽  
Jacopo Franco ◽  
Brecht Truijen ◽  
Philippe Roussel ◽  
Ben Kaczer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document