Plasma Immersion Ion Implantation Modification of Surface Properties of Polymer Material

1996 ◽  
Vol 438 ◽  
Author(s):  
Imad F. Husein ◽  
Yuanzhong Zhou ◽  
Shu Qin ◽  
Chung Chan ◽  
Jacob I. Kleiman ◽  
...  

AbstractThe use of plasma immersion ion implantation (PIII) as a novel method for the treatment of polymer surfaces is investigated. The effect of PIII treatment on the coefficient of friction, contact angle modification, and surface energy of silicone and EPDM (ethylene-propylene-diene monomer) rubber are investigated as a function of pulse voltage, treatment time, and gas species. Low energy (0 - 8 keV) and high dose (∼1017 - 1018 ions/cm2) implantation of N2, Ar, and CF4 is performed using an inductively coupled plasma source (ICP) at low pressure (0.2 mTorr). PIII treatment reduces the coefficient of friction (μ) of silicone rubber from μ = 0.464 to the range μ = 0.176 – 0.274, and μ of EPDM rubber decreases from 0.9 to the range μ = 0.27 – 0.416 depending on processing conditions. The contact angle of water and diiodomethylene decreases after implantation and increases at higher doses for both silicone and EPDM rubber.


1996 ◽  
Vol 438 ◽  
Author(s):  
Yuanzhong Zhou ◽  
Shu Qin ◽  
Chung Chan

AbstractA plasma immersion ion implantation (PIII) hydrogenation process using an inductively-coupled plasma (ICP) source is implemented for defect passivation in polycrystalline silicon (poly-Si) thin film transistors (TFT's). Device parameter improvement saturates in 4 minutes, which is considerably shorter than for other reported hydrogenation methods. Stress test indicates that the devices hydrogenated by this novel technique have much better long-term reliability. The hydrogenation effects on two types of trap states are analyzed the current-voltage characteristics of the devices. The densities of deep states and tail states are significantly reduced after short time hydrogenation.





1996 ◽  
Vol 439 ◽  
Author(s):  
Yuanzhong Zhou ◽  
Shu Qin ◽  
Chung Chan

AbstractA plasma immersion ion implantation (Pill) hydrogenation process using an inductively-coupled plasma (ICP) source is implemented for defect passivation in polycrystalline silicon (poly-Si) thin film transistors (TFT's). Device parameter improvement saturates in 4 minutes, which is considerably shorter than for other reported hydrogenation methods. Stress test indicates that the devices hydrogenated by this novel technique have much better long-term reliability. The hydrogenation effects on two types of trap states are analyzed the current-voltage characteristics of the devices. The densities of deep states and tail states are significantly reduced after short time hydrogenation.



1994 ◽  
Vol 9 (11) ◽  
pp. 2823-2838 ◽  
Author(s):  
B.K. Gupta ◽  
Bharat Bhushan ◽  
C. Capp ◽  
J.V. Coe

In previous studies, sublimed C60-rich fullerene films on silicon, when slid against a 52100 steel ball under dry conditions, have exhibited low coefficient of friction (∼0.12). Films with different purities can be produced by sublimation at different substrate temperatures. In this paper, effects of purity of fullerene films and ion implantation of the films with Ar ions on the friction and wear properties of sublimed fullerene films are reported. C60-rich films (called here films with high purity) exhibit low macroscale friction. An increased amount of C70 and impurities in the fullerene film determined using Raman and Fourier transform infrared (FTIR), increases its coefficient of friction. Microscale friction measurements using friction force microscopy also exhibited similar trends. Low coefficient of friction of sublimed C60-rich films on silicon is probably due to the formation of a tenacious transfer film of C60 molecules on the mating 52100 steel ball surface. Based on scanning tunneling microscopy (STM), transmission electron microscopy (TEM), and high resolution TEM (HRTEM), we found that fullerene films primarily consisted of C60 molecules in a fcc lattice structure. Nanoindenter was used to measure hardness and elastic modulus of the as-deposited films. Ion-implantation with 1 × 1016 Ar+ cm−2 reduced macroscale friction down to about 0.10 from 0.12 with an increase in wear life by a factor of 4; however, doses of 5 × 1016 ions cm−2 gave three times higher friction and poorer wear life; higher doses disintegrated the C60 molecules. Based on STM, TEM, Raman, FTIR, and laser desorption Fourier-transform ion cyclotron resonance mass spectrometer (LD/FT/ICR) studies, we found that the ion implantation with a dose of 1 × 1016 Ar+ cm−2 resulted in smoothening of the fullerene film surface probably by compacting clusters, but without disintegrating the C60 molecules. However, a high dose of 5 × 1016 Ar+ cm−2 damaged the C60 molecules, converting it to an amorphous carbon. Nanoindentation studies show that ion implantation with a dose of 1 × 1016 Ar+ cm−2 resulted in an increase in the hardness from about 1.2 to 4.0 GPa and in elastic modulus from about 70 to 75 GPa and modified the elastic-plastic deformation behavior.





1993 ◽  
Vol 316 ◽  
Author(s):  
R.J. Matyi ◽  
D.L. Chapek ◽  
J.R. Conrad ◽  
S.B. Felch

ABSTRACTWe have used high resolution x-ray diffraction to analyze the structural changes that accompany boron doping of silicon by BF3 plasma source ion implantation (PSII). Triple crystal diffraction analysis of as-implanted PSII doped silicon showed little excess x-ray diffuse scattering, even when analyzed using the asymmetric (113) reflection for increased surface sensitivity. This result suggests that PSΠ is capable of providing high dose implantation with low damage. Annealing of the PSII-doped silicon showed the development of a compressive surface layer, indicated by enhanced x-ray scattering directed perpendicular to the surface. Virtually all of the scattering from the annealed samples was concentrated in the so-called “surface streak” which arises due to dynamical diffraction from the perfect crystal Si structure. Little if any diffuse scattering due to kinematic scattering from crystal defects was detected. These observations indicate that plasma source doping can be used to achieve both a shallow implant depth and an extremely uniform incorporation of boron into the silicon lattice.



2001 ◽  
Vol 136 (1-3) ◽  
pp. 106-110 ◽  
Author(s):  
Jeonghee Cho ◽  
Seunghee Han ◽  
Yeonhee Lee ◽  
Ok Kyung Kim ◽  
Gon-Ho Kim ◽  
...  


2015 ◽  
Vol 88 (1) ◽  
pp. 163-175 ◽  
Author(s):  
R. Mohan ◽  
S. Raja ◽  
G. Saraswathy ◽  
B. N. Das

ABSTRACT Human slip on smooth surfaces is a common accident, even though the footwear soling materials are designed with cleats and treads to provide more friction with the floor. About 20% of footwear is made with thermoplastic rubber (TPR; styrene-butadiene-styrene) soles. The slip resistance property under wet-flooring conditions of this kind of sole is poor because of the nonionic nature of the polymer. Chemical surface modification can be exploited to improve the slip-resistance property of TPR soles. The surface is chemically modified with trichloroisocyanuric acid in a methyl ethyl ketone medium (TCI/MEK; at 1, 2, and 3%) to introduce chlorinated and oxidized moieties to the rubber surface. The extent of surface modification produced in TPR with this change can be tested using attenuated total reflectance–Fourier transform infrared spectroscopy, scanning electron microscopy, and contact angle and surface roughness measurements. The improvement in slip resistance can be evaluated by measuring the coefficient of friction using a dynamic slip-resistance tester. The extent of the change in the functional physical properties, such as surface roughness, contact angle, work adhesion, in slip resistance can be improved by optimizing the concentration of trichloroisocyanuric acid. Physicomechanical properties of unmodified and modified soles that are essential for wear performance can be tested and compared. Quantitative changes on the surface of modified rubber soles increases surface roughness, reduces contact angles, and increases work energy, so there is a considerable increase in the coefficient of friction, especially under wet floor conditions. The chemical surface treatment tends to reduce the bulk mechanical properties, such as tensile strength, elongation at break, and abrasion resistance, because cyanuric acid attacks the sole. The coefficient of friction produces a positive trend at 1 and 2% TCI/MEK treatments, but the trend is negative at a 3% concentration. The optimum surface treatment level for surface modification to enhance the slip resistance of TPR is 2% TCI/MEK.



1994 ◽  
Vol 354 ◽  
Author(s):  
Jiqun Shao ◽  
Eaton Corporation ◽  
Shu Qin ◽  
Zhuofan Zhao ◽  
Chung Chan

AbstractA general relation between the implanted dose and the processing time for plasma immersion ion implantation (PHI) can be established through the dynamic sheath model. In practice, etching and charging effects have to be taken into account in PIII dose estimation.Plasma immersion ion implantation (PII) has been tested in fabrication of semiconductor devices with shallow junctions and in hydrogénation of poly-Si thin film transistors (TFT). PIII doping is more suitable than conventional implantation for such applications because of its high dose rate at lower energy. Since the dose rate in PIII does not depend on the area being treated, the effective current will be higher if a larger implanted area is involved. However, the relation between dose and time is not always straightforward. During PIII processing possible etching and charging will affect the total accumulated doses. This paper presents a model for each which allows a proper compensation to be performed.



2000 ◽  
Vol 33 (22) ◽  
pp. 2869-2874 ◽  
Author(s):  
Imad F Husein ◽  
Chung Chan ◽  
Shu Qin ◽  
Paul K Chu


Sign in / Sign up

Export Citation Format

Share Document