Structural and Surface Morphology Changes in CuInSe2 Thin Films as a Function of Cu/In Ratio

1996 ◽  
Vol 441 ◽  
Author(s):  
P. Fons ◽  
S. Niki ◽  
A. Yamada ◽  
D. J. Tweet

AbstractDue to its high near bandedge absorption, CuInSe2 is considered to be one of the most promising solar cell materials. As CuInSe2 films are usually grown by metastable processes, the Cu/In ratio often deviates from the ideal ratio of unity. To investigate the structural and morphological changes induced by such stoichiometric variations we have grown a series of epitaxial CuInSe2 epitaxial thin films with varying Cu/In ratios by molecular beam epitaxy on GaAs(001) substrates from elemental sources at a growth temperature of 450° C. Overall structural, microstructural and surface morphological changes were observed by X-ray diffraction, transmission electron microscopy, and atomic force microscopy, respectively. It was observed that as films deviated from stoichiometry, twinning occurred preferentially on the anion {1 · 1 · 2} planes.

1999 ◽  
Vol 597 ◽  
Author(s):  
M. Siegert ◽  
Judit G. Lisoni ◽  
C. H. Lei ◽  
A. Eckau ◽  
W. Zander ◽  
...  

AbstractIn the process of developing thin film electro-optical waveguides we investigated the influence of different substrates on the optical and structural properties of epitaxial BaTiO3 thin films. These films are grown by on-axis pulsed laser deposition (PLD) on MgO(100), MgAl2O4(100), SrTiO3(100) and MgO buffered A12O3(1102) substrates. The waveguide losses and the refractive indices were measured with a prism coupling setup. The optical data are correlated to the results of Rutherford backscattering spectrometry/ion channeling (RBS/C). X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM). BaTiO3 films on MgO(100) substrates show planar waveguide losses of 3 dB/cm and ridge waveguide losses of 5 dB/cm at a wavelength of 633 nm.


2001 ◽  
Vol 676 ◽  
Author(s):  
J. C. González ◽  
M. I. N. da Silva ◽  
W. N. Rodrigues ◽  
F. M. Matinaga ◽  
R. Magalhaes-Paniago ◽  
...  

ABSTRACTIn this work, we report optical and structural properties of vertical aligned self-assembled InAs quantum dots multilayers. The InAs quantum dots samples were grown by Molecular Beam Epitaxy. Employing Atomic Force Microscopy, Transmission Electron Microscopy, and Gracing Incident X-ray Diffraction we have studied the structural properties of samples with different number of periods of the multiplayer structure, as well as different InAs coverage. The optical properties were studied using Photoluminescence spectroscopy.


1995 ◽  
Vol 10 (3) ◽  
pp. 680-691 ◽  
Author(s):  
Andreas Seifert ◽  
Fred F. Lange ◽  
James S. Speck

A mixed alkoxide liquid precursor was used to form epitaxial PbTiO3 thin films by spin-coating on cubic (001) SrTiO3 substrates. The films were heat-treated at temperatures between 380 °C/1 h and 800 °C/1 h. X-ray diffraction, atomic force microscopy, scanning and transmission electron microscopy were used to characterize the microstructure of the films and to evaluate the epitaxial phenomena. At ∼400 °C/1 h, a polycrystalline, metastable Pb-Ti fluorite crystallizes from the pyrolyzed amorphous precursor. At slightly higher temperatures (∼420 °C/1 h), the thermodynamically stable phase with the perovskite structure epitaxially nucleates at the film/substrate interface. A small number of epitaxial grains grow through the film toward the surface and consume the nanocrystalline fluorite grains. Coarsening of the perovskite grains leads to a reduction in mosaic spread during further heating. Pores, which concurrently coarsen with grain growth, produce a pitted surface as they disappear from within the film. At 800 °C/1 ha dense epitaxial PbTiO3 film with a smooth surface is observed. Parameters governing the formation of a- and c-domains are discussed as well as the small tilts of the domain axes away from the substrate normal.


2005 ◽  
Vol 872 ◽  
Author(s):  
Yuebing Zheng ◽  
Shijie Wang ◽  
Cheng Hon A. Huan

AbstractThe effect of dopants on the band structure and crystal structure of Ba0.5Sr0.5TiO3thin films on (100) LaAlO3 substrates has been investigated. The dopants include Ti, Mg and Al. The band-gap energies of the thin films were determined from the transmission spectra measured by UVVIS spectrophotometer and increased with the increase of dopant concentration regardless of the type of dopants. The crystal structure was studied by using transmission electron microscopy, atomic force microscopy, x-ray diffraction and micro-Raman spectroscopy. The relation between band structure and crystal structure was discussed.


2009 ◽  
Vol 1222 ◽  
Author(s):  
Hom R Kandel ◽  
Tar-Pin Chen ◽  
Hye-Won Seo ◽  
Milko Iliev ◽  
Paritosh Wadekar ◽  
...  

AbstractWe have fabricated highly resistive materials PrBa2 (Cu1-xMx) 3O7 (M=Al, Ga, x = 0.20) by doping metals Ga and Al on PrBa2Cu3O7(PBCO). X-ray data indicated no significant second phases in substituting Cu by Al or Ga up to 20%.The electrical resistivity of these materials were three to four orders in magnitude higher than PBCO at 200K, which may give an effective potential barrier to YBCO in high Tc S-I-S Josephson junction. Epitaxial thin films of these materials were grown using KrF excimer laser on LAO (110) single crystal substrates. X-ray diffraction (XRD) and atomic force microscopy (AFM) were deployed to study the crystal orientation, epitaxy and roughness of the single crystal thin films. Micro Raman spectroscopy was carried out to investigate the dopant site in PBCO.


2009 ◽  
Vol 24 (1) ◽  
pp. 212-216
Author(s):  
Srinivas Sathiraju ◽  
Paul N. Barnes ◽  
Robert A. Wheeler

We report the systematic substitution of Nb at the Cu1 site of YBa2Cu3Oy in thin films to form a new phase of YBa2Cu2NbO8. These films were deposited on SrTiO3(100) crystals using pulsed laser deposition and deposited at an optimal temperature of 850 °C. Films were characterized using x-ray diffraction (XRD), atomic force microscopy, x-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, and transmission electron microscopy. XRD of these films indicate c-axis oriented YBa2Cu2NbOy formation. XPS and micro-Raman spectroscopy analysis suggests Cu exists in the +2 state.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 215
Author(s):  
Rajeev R. Kosireddy ◽  
Stephen T. Schaefer ◽  
Marko S. Milosavljevic ◽  
Shane R. Johnson

Three InAsSbBi samples are grown by molecular beam epitaxy at 400 °C on GaSb substrates with three different offcuts: (100) on-axis, (100) offcut 1° toward [011], and (100) offcut 4° toward [011]. The samples are investigated using X-ray diffraction, Nomarski optical microscopy, atomic force microscopy, transmission electron microscopy, and photoluminescence spectroscopy. The InAsSbBi layers are 210 nm thick, coherently strained, and show no observable defects. The substrate offcut is not observed to influence the structural and interface quality of the samples. Each sample exhibits small lateral variations in the Bi mole fraction, with the largest variation observed in the on-axis growth. Bismuth rich surface droplet features are observed on all samples. The surface droplets are isotropic on the on-axis sample and elongated along the [011¯] step edges on the 1° and 4° offcut samples. No significant change in optical quality with offcut angle is observed.


1995 ◽  
Vol 382 ◽  
Author(s):  
Martin Pehnt ◽  
Douglas L. Schulz ◽  
Calvin J. Curtis ◽  
Helio R. Moutinho ◽  
Amy Swartzlander ◽  
...  

ABSTRACTIn this article we report the first nanoparticle-derived route to smooth, dense, phase-pure CdTe thin films. Capped CdTe nanoparticles were prepared by injection of a mixture of Cd(CH3)2, (n-C8H17)3 PTe and (n-C8H17)3P into (n-C8H17)3PO at elevated temperatures. The resultant nanoparticles 32-45 Å in diameter were characterized by x-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy, thermogravimetric analysis and energy dispersive x-ray spectroscopy. CdTe thin film deposition was accomplished by dissolving CdTe nanoparticles in butanol and then spraying the solution onto SnO2-coated glass substrates at variable susceptor temperatures. Smooth and dense CdTe thin films were obtained using growth temperatures approximately 200 °C less than conventional spray pyrolysis approaches. CdTe films were characterized by x-ray diffraction, UV-Vis spectroscopy, atomic force microscopy, and Auger electron spectroscopy. An increase in crystallinity and average grain size as determined by x-ray diffraction was noted as growth temperature was increased from 240 to 300 °C. This temperature dependence of film grain size was further confirmed by atomic force microscopy with no remnant nanocrystalline morphological features detected. UV-Vis characterization of the CdTe thin films revealed a gradual decrease of the band gap (i.e., elimination of nanocrystalline CdTe phase) as the growth temperature was increased with bulk CdTe optical properties observed for films grown at 300 °C.


Cerâmica ◽  
2002 ◽  
Vol 48 (305) ◽  
pp. 38-42 ◽  
Author(s):  
M. I. B. Bernardi ◽  
E. J. H. Lee ◽  
P. N. Lisboa-Filho ◽  
E. R. Leite ◽  
E. Longo ◽  
...  

The synthesis of TiO2 thin films was carried out by the Organometallic Chemical Vapor Deposition (MOCVD) method. The influence of deposition parameters used during growth on the final structural characteristics was studied. A combination of the following experimental parameters was studied: temperature of the organometallic bath, deposition time, and temperature and substrate type. The high influence of those parameters on the final thin film microstructure was analyzed by scanning electron microscopy with electron dispersive X-ray spectroscopy, atomic force microscopy and X-ray diffraction.


1999 ◽  
Vol 572 ◽  
Author(s):  
Stefan Zollner ◽  
Atul Konkar ◽  
R. B. Gregory ◽  
S. R. Wilson ◽  
S. A. Nikishin ◽  
...  

ABSTRACTWe measured the ellipsometric response from 0.7–5.4 eV of c-axis oriented AlN on Si (111) grown by molecular beam epitaxy. We determine the film thicknesses and find that for our AlN the refractive index is about 5–10% lower than in bulk AlN single crystals. Most likely, this discrepancy is due to a low film density (compared to bulk AlN), based on measurements using Rutherford backscattering. The films were also characterized using atomic force microscopy and x-ray diffraction to study the growth morphology. We find that AlN can be grown on Si (111) without buffer layers resulting in truely two-dimensional growth, low surface roughness, and relatively narrow x-ray peak widths.


Sign in / Sign up

Export Citation Format

Share Document