Theoretical Study of Native Point Defects in Aln and InN

1997 ◽  
Vol 482 ◽  
Author(s):  
C. Stampfl ◽  
Chris G. Van De Walle

AbstractWe have studied native point defects in AlN and InN using density-functional calculations employing both the local-density and generalized gradient approximations for the exchange-correlation functional. For both materials we find that the nitrogen vacancy acts as a compensating center in p-type material. For AIN in the zinc-blende structure, the aluminum interstitial has an equally low formation energy as the nitrogen vacancy. For n-type material the aluminum vacancy is the dominant compensating center in AlN. For n-type InN, all defect formation energies are high.

2017 ◽  
Vol 16 ◽  
pp. 47-51
Author(s):  
Emmanuel Igumbor ◽  
Ezekiel Omotoso ◽  
Walter Ernst Meyer

We present results of defect formation energies and charge state thermodynamic transition levels of Mg and Te interstitials in MgTe wurzite structure. We use the generalized gradient approximation and local density approximation functionals in the framework of density functional theory for all calculations. The formation energies of the Mg and Te interstitials in MgTe for both the tetrahedral and hexagonal configurations were obtained. The Mg and Te interstitials in MgTe depending on the functional, introduced transition state levels that are either donor or acceptor within the band gap of the MgTe. The Te interstitial exhibit charge states controlled metastability, negative-U and DX centre properties. The Mg interstitial acts as deep or shallow donor and there is no evidence of acceptor levels found for the Mg interstitial.


1990 ◽  
Vol 216 ◽  
Author(s):  
M.A. Berding ◽  
A. Sher ◽  
A.-B. Chen

ABSTRACTNative point defects play an important role in HgCdTe. Here we discuss some of the relevant mass action equations, and use recently calculated defect formation energies to discuss relative defect concentrations. In agreement with experiment, the Hg vacancy is found to be the dominant native defect to accommodate excess tellurium. Preliminary estimates find the Hg antisite and the Hg interstitial to be of comparable densities. Our calculated defect formation energies are also consistent with measured diffusion activation energies, assuming the interstitial and vacancy migration energies are small.


2014 ◽  
Vol 1633 ◽  
pp. 37-42
Author(s):  
Altynbek Murat ◽  
Julia E. Medvedeva

ABSTRACTThe formation of native point defects in layered multicomponent InAMO4 oxides with A3+=Al or Ga, and M2+=Ca, Mg, or Zn, is investigated using first-principles density functional calculations. We calculated the formation energy of acceptor (cation vacancies, acceptor antisites) and donor (oxygen vacancy, donor antisites) defects within the structurally and chemically distinct layers of InAMO4 oxides. We find that the antisite donor defect, in particular, the A atom substituted on the M atom site (AM) in InAMO4 oxides, have lower formation energies, hence, higher concentrations, as compared to those of the oxygen vacancy which is know to be the major donor defect in binary constituent oxides. The major acceptor (electron “killer”) defects are cation vacancies except for InAlCaO4 where the antisite CaAl is the most abundant acceptor defect. The results of the defect formation analysis help explain the changes in the observed carrier concentrations as a function of chemical composition in InAMO4, and also why the InAlZnO4 samples are unstable under a wide range of growing conditions.


NANO ◽  
2013 ◽  
Vol 08 (02) ◽  
pp. 1350021 ◽  
Author(s):  
LI BIN SHI ◽  
GUO QUAN QI ◽  
YING FEI

The defect formation energies and magnetic properties in Co -doped ZnO nanowires (NWs) are studied using the first-principle density functional method within the generalized gradient approximation (GGA) and GGA + U schemes. It is found that Co impurity has lower formation energies in the surface sites, indicating that Co impurity occupies preferably surface sites of NWs. Ferromagnetic (FM) and antiferromagnetic (AFM) coupling are investigated by GGA and GGA + U methods. The results show that the AFM coupling in energy is lower than the FM coupling, which indicates that AFM coupling is more stable. The magnetic properties can be mediated by the vacancies [ VO(B) and VZn(B) ] and interstitials [ IZn(oct) ]. The stability of the FM and AFM can be explained by the Co 3d energy level coupling.


2006 ◽  
Vol 251-252 ◽  
pp. 1-12 ◽  
Author(s):  
Faruque M. Hossain ◽  
Graeme E. Murch ◽  
L. Sheppard ◽  
Janusz Nowotny

The purpose of this work is to study the effect of bulk point defects on the electronic structure of rutile TiO2. The paper is focused on the effect of oxygen nonstoichiometry in the form of oxygen vacancies, Ti interstitials and Ti vacancies and related defect disorder on the band gap width and on the local energy levels inside the band gap. Ab initio density functional theory is used to calculate the formation energies of such intrinsic defects and to detect the positions of these defect induced energy levels in order to visualize the tendency of forming local mid-gap bands. Apart from the formation energy of the Ti vacancies (where experimental data do not exist) our calculated results of the defect formation energies are in fair agreement with the experimental results and the defect energy levels consistently support the experimental observations. The calculated results indicate that the exact position of defect energy levels depends on the estimated band gap and also the charge state of the point defects of TiO2.


2015 ◽  
Vol 242 ◽  
pp. 440-446 ◽  
Author(s):  
Emmanuel Igumbor ◽  
Kingsley Obodo ◽  
Water E. Meyer

We present detailed calculations of formation and thermodynamics transition state energies of Mgiand Seiinterstitial defects in MgSe using generalized gradient approximation (GGA) and local density approximation (LDA) functional in the frame work of density functional theory (DFT). For both LDA and GGA the formation energies of Mgiand Seiare relatively low in all the configurations. The most stable Se interstitial was the tetrahedral (T) configuration having lower formation energy than the decagonal (D) configuration. TheMgiand Seidefect introduced transition state levels that had either donor or acceptor levels within the band gap. Seiacts as a donor or an acceptor and creates levels that were either deep or shallow depending on the configuration. Seiexhibit negative-U properties and show charge states metastability in the D configuration. Mgiacts as only shallow donor (+2/ + 1) in both T and D configurations, in addition we pointed out the role of Mgias electrically activating donor.


2003 ◽  
Vol 799 ◽  
Author(s):  
Xiaoshu Jiang ◽  
M. S. Miao ◽  
Walter R. L. Lambrecht

ABSTRACTFirst-principles calculations are presented for various native point defects in ZnGeP2 us-ing a full-potential linearized muffin-tin orbital method in the local density approximation to density functional theory. Under Zn-poor conditions, the lowest Gibbs energy defects are found to be the Gezn antisite and Vzn. The Vae is found to have high energy of formation under any chemical potential conditions and is unstable towards formation of a Vzn and ZnGe pair. It is shown that the V−Zn cannot account for the ALI EPR spectrum commonly associated with this vacancy and an alternative model consisting of a Vzn – GeZn – Vzn is tentatively proposed.


2006 ◽  
Vol 45 ◽  
pp. 1-8 ◽  
Author(s):  
Jun He ◽  
Mike W. Finnis ◽  
Elizabeth C. Dickey ◽  
Susan B. Sinnott

TiO2 has been intensively studied as a wide band-gap transition metal oxide partially due to the multi-valence nature of its cation. Here, density-functional theory calculations within the supercell approximation are carried out to determine the preferred charge state of point defects in rutile TiO2. The first component of this work is to investigate the dependence of the defect formation energies on supercell size and the electrostatic Makov-Payne correction. The results show that the Makov-Payne correction improves the convergence of defect formation energies as a function of supercell size for positively charged titanium interstitials and negatively charged titanium vacancies. However, in the case of positively charged oxygen vacancies, applying the Makov-Payne correction gives the wrong sign for the defect formation energy correction. This is attributed to the shallow nature of the transition levels for this defect in TiO2. Finally, we combine the calculated defect formation energies with thermodynamic data to evaluate the influence of temperature on the relative stabilities of point defects. The results indicate that when the Makov- Payne correction is applied, a stable charge transition occurs for titanium interstitials. In addition, as the temperature increases, the dominant point defect in TiO2 changes from oxygen vacancies to titanium interstitials.


2007 ◽  
Vol 21 (26) ◽  
pp. 1775-1784
Author(s):  
HUAN-YOU WANG ◽  
HUI XU ◽  
JIAN-RONG XIAO ◽  
MINGJUN LI

We have performed density-functional perturbation calculation for zinc-blende AlN using the pseudopotential plane-wave method. The results obtained using both the local-density approximate (LDA) and the generalized-gradient approximate (GGA) for exchange-correlation functional are compared. The ground state properties and response function properties for zinc-blende AlN , including the electronic band structure, charge density, Born effective charge, dielectric constant and vibrational properties are reported. Our results are basically in agreement with experimental data and theoretical values available, but the bandgap is underestimated and the first optical mode in the phonon band structure is overestimated. This can be attributed to the underestimation of the lattice parameter and selection of the pseudopotential.


2021 ◽  
Author(s):  
Arun Mannodi-Kanakkithodi ◽  
Xiaofeng Xiang ◽  
Laura Jacoby ◽  
Robert Biegaj ◽  
Scott Dunham ◽  
...  

Abstract Point defects or impurities are either naturally present in semiconductors or may be intentionally introduced to tune their electronic and optical properties. The nature of impurity energy levels can strongly influence the performance of a semiconductor in applications ranging from solar cells to photodiodes to infrared sensors to qubits for quantum computing. In this work, we develop a framework powered by machine learning (ML) and high-throughput density functional theory (DFT) computations for the prediction and screening of functional impurities in group IV, III-V, and II-VI zinc blende semiconductors. Elements spanning the length and breadth of the periodic table are considered as impurity atoms at the cation, anion, or interstitial sites in supercells of 34 candidate semiconductors, leading to a chemical space of   12,000 points, 10% of which are used to generate a DFT dataset of charge dependent defect formation energies. Descriptors based on tabulated elemental properties, defect coordination environment, and relevant semiconductor properties are used to train ML regression models for the DFT computed properties, resulting in statistical predictions of the neutral state formation energies and charge transition levels of all possible impurities in the given set of compounds. Kernel ridge regression, Gaussian process regression, and neural networks, with appropriate feature selection and hyperparameter optimization, are seen to yield similar predictive performances and meaningful uncertainty estimates. We apply the ML framework to screen all impurities with lower formation energy than dominant native defects in all group IV, III-V, and II-VI zinc blende semiconductors. An online tool resulting from this work for predicting and visualizing defect properties in semiconductors is made available on github.


Sign in / Sign up

Export Citation Format

Share Document