Tem Study of Yielding in Polycrystalline Gold Thin Films

1997 ◽  
Vol 505 ◽  
Author(s):  
Kwame Owusu-Boahen ◽  
Alexander H. King

ABSTRACTWe have used transmission electron microscopy (TEM) to study the microstructure of thin gold films which were grown on 〈100〉 rock salt. The samples were annealed on the rock salt substrate or on a gold TEM specimen grid. Films annealed on rock salt had a larger mean grain size than those annealed on TEM grids. All of the annealed films have a 〈111〉 preferred orientation. Several cracks are observed in the film annealed on rock salt. Plastic yielding of the film was identified by the presence of dislocations, and is caused by tensile stress derived from grain growth. In spite of the uniform texture of the films, the observed dislocations were concentrated only in some individual grains, while their surrounding grains remained dislocation-free. Yielded grains showed no difference of orientation that would lead to higher Schmid factors, so other predictors of yielding must be considered.

1996 ◽  
Vol 11 (11) ◽  
pp. 2841-2851 ◽  
Author(s):  
H. W. Sheng ◽  
J. Xu ◽  
L. G. Yu ◽  
X. K. Sun ◽  
Z. Q. Hu ◽  
...  

Dispersions of nanometer-sized In particles embedded in an Al matrix (10 wt. % In) have been synthesized by ball milling of a mixture of Al and In powders. The as-milled product was characterized by using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray spectrometer (EDX), transmission electron microscopy (TEM), and high resolution transmission electron microscopy (HREM), respectively. It was found that In and Al are pure components immiscible with each other, with nanometer-sized In particles dispersively embedded in the Al matrix. The melting behavior of In particles was investigated by means of differential scanning calorimeter (DSC). The calorimetric measurements indicate that both the melting point and the melting enthalpy of the In nanoparticles decrease with increasing milling time, or refinement of the In particles. Compared to its bulk melting temperature, a melting point depression of 13.4 K was observed when the mean grain size of In is 15 nm, and the melting point depression of In nanoparticles is proportional to the reciprocal of the mean grain size. The melting enthalpy depression was interpreted according to the two-state concept for the nanoparticles. Melting of the interface was deduced to be an exothermal process due to its large excess energy/volume.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2849
Author(s):  
Marcin Jan Dośpiał

This paper presents domain and structure studies of bonded magnets made from nanocrystalline Nd-(Fe, Co)-B powder. The structure studies were investigated using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Mössbauer spectroscopy and X-ray diffractometry. On the basis of performed qualitative and quantitative phase composition studies, it was found that investigated alloy was mainly composed of Nd2(Fe-Co)14B hard magnetic phase (98 vol%) and a small amount of Nd1.1Fe4B4 paramagnetic phase (2 vol%). The best fit of grain size distribution was achieved for the lognormal function. The mean grain size determined from transmission electron microscopy (TEM) images on the basis of grain size distribution and diffraction pattern using the Bragg equation was about ≈130 nm. HRTEM images showed that over-stoichiometric Nd was mainly distributed on the grain boundaries as a thin amorphous border of 2 nm in width. The domain structure was investigated using a scanning electron microscope and metallographic light microscope, respectively, by Bitter and Kerr methods, and by magnetic force microscopy. Domain structure studies revealed that the observed domain structure had a labyrinth shape, which is typically observed in magnets, where strong exchange interactions between grains are present. The analysis of the domain structure in different states of magnetization revealed the dynamics of the reversal magnetization process.


1989 ◽  
Vol 4 (2) ◽  
pp. 248-256 ◽  
Author(s):  
T. M. Shaw ◽  
S. L. Shinde ◽  
D. Dimos ◽  
R. F. Cook ◽  
P. R. Duncombe ◽  
...  

We have used transmission electron microscopy and optical microscopy to examine the effect that grain size and heat treatment have on twinning and microcracking in polycrystalline Y1Ba2Cu3O7−δ. It is shown that isothermal oxygenation heat treatments produce twin structures consisting of parallel twins, with a characteristic spacing that increases with increasing grain size. Slow cooling through the temperature range where the orthorhombic-to-tetragonal transformation induces twinning, however, produces a structure consisting of a hierarchical arrangement of intersecting twins, the scale of which appears to be independent of grain size. It is also shown that the microcracking induced by anisotropic changes in grain dimensions on cooling or during oxygenation can be suppressed if the grain size of the material is kept below about 1 μm. The results are examined in the light of current models for transformation twinning and microcracking and the models used to access the effect other processing variables such as oxygen content, doping or heat treatment may have on the microstructure of Y1Ba2Cu3O7−δ.


1999 ◽  
Vol 14 (12) ◽  
pp. 4570-4580 ◽  
Author(s):  
M. Alguerá ◽  
M. L. Calzada ◽  
L. Pardo ◽  
E. Snoeck

Transmission electron microscopy has shown that the grain size of sol-gel-prepared lanthanum-modified lead titanate films increases from ∼100 to ∼1 μm when the excess of PbO in the precursor solution is reduced from 20 to 10 mol%. Switchable polarization is higher in the films with a smaller grain size. Profilometry and the temperature dependence of the dielectric permittivity indicate that films are tensile stressed by the substrate. The grain-size effect on polarization switching is explainedby taking into account this tensile stress, which is thought to induce some a-domain orientation and 90° domain wall clamping in the grains attached to the substrate.


2013 ◽  
Vol 275-277 ◽  
pp. 1952-1955
Author(s):  
Ling Fang Jin ◽  
Xing Zhong Li

New functional nanocomposite FePt:C thin films with FePt underlayers were synthesized by noneptaxial growth. The effect of the FePt layer on the ordering, orientation and magnetic properties of the composite layer has been investigated by adjusting FePt underlayer thickness from 2 nm to 14 nm. Transmission electron microscopy (TEM), together with x-ray diffraction (XRD), has been used to check the growth of the double-layered films and to study the microstructure, including the grain size, shape, orientation and distribution. XRD scans reveal that the orientation of the films was dependent on FePt underlayer thickness. In this paper, the TEM studies of both single-layered nonepitaxially grown FePt and FePt:C composite L10 phase and double-layered deposition FePt:C/FePt are presented.


2007 ◽  
Vol 1056 ◽  
Author(s):  
Jafar F. Al-Sharab ◽  
Rajendra Sadangi ◽  
Vijay Shukla ◽  
Bernard Kear

ABSTRACTPolycrystalline Y2O3 is the material of choice for IR windows since it has excellent optical properties in the visible, and near infra-red band. However, current processing methods yield polycrystalline Y2O3 with large grain size (> 100 μm), which limits the hardness and erosion resistance attainable. One way to improve strength is to develop an ultra-fine grained material with acceptable optical transmission properties. To realize a fine-grained ceramic, one approach is to develop a composite structure, in which one phase inhibits the growth of the other phase during processing. In this study, Y2O3-MgO nanocomposite with various MgO content (20, 50 and 80 mol%) were synthesized using plasma spray method. Extensive characterization techniques including x-ray diffraction, scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Energy Dispersive spectrometry (EDS) were employed to study the synthesized powder as well as the consolidated sample. Transmission Electron Microscopy, as well as EDS chemical mapping, revealed that the consolidated sample have bi-continuous MgO-Y2O3 nanostructure with an average grain size of 200 nm.


1983 ◽  
Vol 25 ◽  
Author(s):  
Y. Yokota ◽  
R. Matz ◽  
P.S. Ho

ABSTRACTThe microstructure of the Pt silicide formed on clean Si surfaces has been investigated using transmission electron microscopy. Pt up to 200Å was evaporated on atomically clean Si (100) and (111) substrates under an ultrahigh vacuum condition. The silicide was formed by annealing up to 600°C for (100) substrates in a purified He atmosphere and in-situ UHV for (111) substrates. For the (100) substrate, as-deposited Pt showed a fine polycrystalline structure with grain size of about 10tm. Upon annealing at 250° to 300°C, formation of Pt silicide was observed, which was primarily PtSi with only a small amount of Pt2Si. The silicide coverage was incomplete below about 1.5nm. Upon further annealing, the fraction of PtSi increased although Pt2Si persisted until 400°C. At 600°C, PtSi showed an epitaxial relationship with its c axis perpendicular to the Si (100) surface. On the Si (111) surface, PtSi formed epitaxially above 400°C. The silicide structure showed a multidiffraction pattern with three-fold symmetry, reflecting the three equivalent but strained epitaxial orientations. A high resolution lattice image technique was used to investigate the details of the epitaxial structures of PtSi on Si (100) and (111) substrates.


1995 ◽  
Vol 388 ◽  
Author(s):  
A.N. Zakoutayev ◽  
G.E. Remnev ◽  
Yu.F. Ivanov ◽  
M.S. Arteyev ◽  
V.M. Matvienko ◽  
...  

AbstractA high-intensity ion beam (500 keV, current density 60 - 200 a/cm2, power density (0.25 - 1) • 108 W/cm2, pulse duration 60 ns, pulse repetition rate 4-6 mur-1) was used to deposit thin metal and carbon films by evaporation of respective targets. the instantaneous deposition rate was 0.6 - 5 mm/s. the films were examined using transmission electron microscopy and transmission electron diffraction. the metal films had a poly-crystalline structure with the grains measuring from 20 to 100 nm, the lower the melting point the greater the grain size. the carbon films contained 25 - 125 nm diamonds. the ablation plasma was studied employing methods of pulsed spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document