Diffusion of Strain Induced Defects after Heavy Ion Irradiation

1998 ◽  
Vol 527 ◽  
Author(s):  
G. Aggarwal ◽  
P. Sen

ABSTRACTWe report study of recovery dynamics, followed by in-situ resistivity measurement, after 100 MeV oxygen ion irradiation in cold rolled Fe at 300K. Scaling behavior with microstructural density and temperature of sample has been used to establish stress induced defects formed during irradiation as a new type of sink. The dynamics after irradiation has been shown to be due to migration of defects to two types of sinks i.e. stress induced defect as variable sinks and internal surfaces as fixed sinks.

2001 ◽  
Vol 15 (02) ◽  
pp. 69-80 ◽  
Author(s):  
D. BEHERA ◽  
K. PATNAIK ◽  
N. C. MISHRA

The evolution of microstructure under swift heavy ion (SHI) irradiation is probed in a granular medium such as YBCO thick films prepared through diffusion reaction technique. From the temperature-dependent in situ resistivity measurement during ion irradiation, we have been able to isolate the irradiation induced modifications at the grain boundaries and the grains. With 120 MeV S ion irradiation, we show that in addition to damaging the insulating grain boundaries and hence destroying superconducting phase coherence, ion irradiation brings about an improvement in the microstructure of the cuprates. Irradiation is shown to induce alignment of the grains in an otherwise randomly oriented granular superconductor.


Author(s):  
Charles W. Allen ◽  
Robert C. Birtcher

The uranium silicides, including U3Si, are under study as candidate low enrichment nuclear fuels. Ion beam simulations of the in-reactor behavior of such materials are performed because a similar damage structure can be produced in hours by energetic heavy ions which requires years in actual reactor tests. This contribution treats one aspect of the microstructural behavior of U3Si under high energy electron irradiation and low dose energetic heavy ion irradiation and is based on in situ experiments, performed at the HVEM-Tandem User Facility at Argonne National Laboratory. This Facility interfaces a 2 MV Tandem ion accelerator and a 0.6 MV ion implanter to a 1.2 MeV AEI high voltage electron microscope, which allows a wide variety of in situ ion beam experiments to be performed with simultaneous irradiation and electron microscopy or diffraction.At elevated temperatures, U3Si exhibits the ordered AuCu3 structure. On cooling below 1058 K, the intermetallic transforms, evidently martensitically, to a body-centered tetragonal structure (alternatively, the structure may be described as face-centered tetragonal, which would be fcc except for a 1 pet tetragonal distortion). Mechanical twinning accompanies the transformation; however, diferences between electron diffraction patterns from twinned and non-twinned martensite plates could not be distinguished.


2013 ◽  
Vol 433 (1-3) ◽  
pp. 95-107 ◽  
Author(s):  
Y. Idrees ◽  
Z. Yao ◽  
M.A. Kirk ◽  
M.R. Daymond

2020 ◽  
Vol 198 ◽  
pp. 85-99 ◽  
Author(s):  
Calvin Parkin ◽  
Michael Moorehead ◽  
Mohamed Elbakhshwan ◽  
Jing Hu ◽  
Wei-Ying Chen ◽  
...  

1996 ◽  
Vol 439 ◽  
Author(s):  
M. L. Jenkins ◽  
H. Fukushima ◽  
M. A. Kirk

AbstractWe have carried out systematic experiments to explore the range of applicability of the two direct methods which are available for the determination of the nature of small clusters. Experiments in heavy-ion irradiated silver and copper, including direct comparisons with the results of Black-White contrast analysis (B-W), forced us to the conclusion that use of the 21/2D technique for the analysis of faulted loops is effectively impossible because of reciprocal-lattice spike and other effects. We used B-W analysis to investigate the nature of the clusters produced by room-temperature heavy-ion irradiation of copper. In-situ irradiations were performed in the Argonne HVEM-Tandem Facility using 40keV and 80keV Kr+ ions. Nearly all of the analysable first-layer loops were found to be vacancy in nature. Some deeper clusters were also certainly vacancy. There is no unequivocal evidence for interstitial loops under these conditions. The near impossibility of establishing that interstitial loops are not present is shown by the fact that a large fraction of loops - over 50% - could not be analysed either because they did not display clear B-W contrast under any condition or sufficiently consistent B-W contrast under several different operating conditions.


1999 ◽  
Vol 5 (S2) ◽  
pp. 758-759
Author(s):  
W.L. Zhou ◽  
Y. Sasaki ◽  
Y. Ikuhara ◽  
C.J.O’Connor

Artificial defects generated by ion irradiation have been considered an efficient method to enhance the critical current density in superconducting materials. The mechanism of producing defects as flux pining centers is still an important issue since the efficiency of irradiation-induced defects in flux pinning strongly depends on their microstructures. Different types of defects have been found in heavy ion irradiation. However, there are few results that show light ion irradiation due to the target material selected, the type of light ion and energy, and the incident ion angle. Another factor is the difficulty of cross-sectional sample preparation. In this paper, a single crystal Bi2Sr2CaCu2O7-x with 11 MeV B5+ ion irradiation was observed by transmission electron microscope (TEM) from both plan and cross-sectional view.The Bi2Sr2CaCu2O7-x single crystals used for ion irradiation were prepared using the floating-zone melting method. The crystals were cleaved into thin sheets of about 20 μm thickness along the a-b plane and cut to about 2mmx2mm size.


1995 ◽  
Vol 396 ◽  
Author(s):  
A. I. Van Sambeek ◽  
R.S. Averback

AbstractIn-situ stress measurements on single crystal MgO and A1203 have been performed during ion irradiation. A cantilevered beam sample arrangement was used, with the stress in the implanted layer determined from the deflection of the sample as measured by the change in capacitance between the free end of the sample and a reference electrode. Point defect concentrations are obtained by dividing the volume strain by the defect relaxation volume, with saturation values of 0.8 to 1.2% obtained for 1.0 MeV Ne, Ar and Kr irradiations. Defect production is sublinear with dose, with an efficiency of less than 25% compared to Kinchin-Pease predictions. Ionization induced annealing is evaluated with 1.0 MeV He and 1.0 MeV H irradiations following heavy ion irradiation.


2015 ◽  
Vol 464 ◽  
pp. 185-192 ◽  
Author(s):  
Wei-Ying Chen ◽  
Meimei Li ◽  
Xuan Zhang ◽  
Marquis A. Kirk ◽  
Peter M. Baldo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document