Low k Film Etch in Applied Materials eMxP+ Chamber

1998 ◽  
Vol 544 ◽  
Author(s):  
Melissa Yu ◽  
Hongching Shan ◽  
Ashley Taylor

ABSTRACTThe materials with lower dielectric constant ( low k ) have been attracting attention recently because the low k material has the potential to be used in place of SiO2 in ULSI. In this work, we focused on evaluating organic low k material performance with plasma etch in the Applied Material's eMxP+ anisotropic etch chamber. The films studied were Dow Chemical BCB and Silk, Allied Signal Flare 2.0, and Du Pont FPI. The feature sizes of the wafer s were 0.25 to 1 micron trenches. Du Pont FPI resulted in the highest achieved etch rate of more than lum/min, followed by BCB, and Flare. The microloading study indicated that the etch rate microloading is less than 10% between lum and 0.25 urn feature sizes, which suggests that the chance of etch stop for a high aspect ratio features will be small. The profile could vary from bowing to vertical, to tapering by using different process conditions, mainly by temperature. The FP1 profile was more tapered than those of BCB and Flare when the same process was used to etch the same type of patterned wafer having these three different low k films. The detailed study showed that the trend of etch rate and profile for BCB and Flare film etch were similar, but that the absolute value for profile, as well as the trend of etch rate uniformity and profile were somewhat different. In conclusion, low k materials can be etched in AMAT traditional dielectric chamber (eMxP+) with a good etch rate and profile control.

RSC Advances ◽  
2017 ◽  
Vol 7 (85) ◽  
pp. 53970-53976 ◽  
Author(s):  
Tianyi Na ◽  
Hao Jiang ◽  
Liang Zhao ◽  
Chengji Zhao

The novel naphthyl epoxy resin was synthesized and cured with MeHHPA. It showed significantly lower dielectric constant and dielectric loss than other commercial epoxy resins due to the introduction of fluorine on the side chains.


1996 ◽  
Vol 443 ◽  
Author(s):  
A. Grill ◽  
V. Patel ◽  
K.L. Saenger ◽  
C. Jahnes ◽  
S.A. Cohen ◽  
...  

AbstractA variety of diamondlike carbon (DLC) materials were investigated for their potential applications as low-k dielectrics for the back end of the line (BEOL) interconnect structures in ULSI circuits. Hydrogenated DLC and fluorine containing DLC (FDLC) were studied as a low-k interlevel and intralevel dielectrics (ILD), while silicon containing DLC (SiDLC) was studied as a potential low-k etch stop material between adjacent DLC based ILD layers, which can be patterned by oxygen-based plasma etchingIt was found that the dielectric constant (k) of the DLC films can be varied between >3.3 and 2.7 by changing the deposition conditions. The thermal stability of these DLC films was found to be correlated to the values of the dielectric constant, decreasing with decreasing k. While DLC films having dielectric constants k>3.3 appeared to be stable to anneals of 4 hours at 400 °C in He, a film having a dielectric constant of 2.7 was not, losing more than half of its thickness upon exposure to the same anneal. The stresses in the DLC films were found to decrease with decreasing dielectric constant, from 700 MPa to about 250 MPa. FDLC films characterized by a dielectric constant of about 2.8 were found to have similar thermal stability as DLC films with k >3.3. The thermally stable FDLC films have internal stresses <300 MPa and are thus promising candidates as a low-k ILD.For the range of Si contents examined (0-9% C replacement by Si), SiDLC films with a Si content of around 5% appear to provide an effective etch-stop for oxygen RIE of DLC or FDLC films, while retaining desirable electrical characteristics. These films showed a steady state DLC/SiDLC etch rate ratio of about 17, and a dielectric constant only about 30% higher than the 3.3 of DLC.


1999 ◽  
Vol 565 ◽  
Author(s):  
J. N. Bremmer ◽  
D. Gray ◽  
Y. Liu ◽  
K. Gruszynski ◽  
S. Marcus

AbstractLow dielectric constant hydrogen silsesquioxane films were achieved by rapid thermal cure processing with production viable equipment. A reduced dielectric constant of k = 2.5–2.6 is demonstrated by optimizing rapid thermal cure process conditions to produce low density hydrogen silsesquioxane thin films. This is a significant reduction relative to production proven furnace cure processed hydrogen silsesquioxane with k = 2.9. Concurrent with reduced k performance is a characteristic film expansion which contributes to formation of a low density structure. A mechanism for film expansion and relevance to low k performance is described; and issues relative to integration of rapid thermal processed low k hydrogen silsesquioxane are discussed.


RSC Advances ◽  
2014 ◽  
Vol 4 (101) ◽  
pp. 57759-57767 ◽  
Author(s):  
Mathivathanan Ariraman ◽  
Ramachandran Sasi kumar ◽  
Muthukaruppan Alagar

The continual development of microelectronics needs insulation materials with lower dielectric constant (low k).


1990 ◽  
Vol 5 (8) ◽  
pp. 1733-1738 ◽  
Author(s):  
Stephen R. Cain ◽  
Luis J. Matienzo ◽  
David W. Wang

An experimental silicon-containing benzocyclobutene thermosetting resin from DOW has been evaluated for use as a plasma etch stop in packaging applications. The thermal and etch properties of this particular resin (DOW UX-13005.02L) make it suitable for use as an etch stop. Further, a model for in situ laser interferometry is proposed. By applying the model to the laser interferogram, the initial etch rate and amount of material removed before etching ceases may be determined.


2005 ◽  
Vol 863 ◽  
Author(s):  
Gregory C. Smith ◽  
Neil Henis ◽  
Richard McGowan ◽  
Brian White ◽  
Matthias Kraatz ◽  
...  

AbstractTwo level metal structures were fabricated to test the efficacy of using an organic low K etch stop layer (OESL) in order to lower the effective dielectric constant for intralayer capacitance. The organic etch stop layer's intrinsic capacitance of 3.3 compares with that of silicon carbide (∼ 5) which constitutes the control of the experiment. This reduction represents a reduction of effective dielectric constant for the stack of about 10% to about 3.0. The process was optimized so as to achieve yield of via chains of a million 130 nm diameter vias, and effective K was measured. The target of 3.0 was achieved using this process. Interpenetration of the organic etch stop with the MSQ porous low K material was observed.


2005 ◽  
Vol 875 ◽  
Author(s):  
B.R. Kim ◽  
J. M. Son ◽  
J.W. Kang ◽  
K.Y. Lee ◽  
K.K. Kang ◽  
...  

AbstractDecreasing the circuit dimensions is driving the need for low-k materials with a lower dielectric constant to reduce RC delay, crosstalk, and power consumption. In case of spin-on organosilicate low-k films, the incorporation of a porogen is regarded as the only foreseeable route to decrease dielectric constant of 2.2 or below by changing a packing density. In this study, MTMS-BTMSE copolymers that had superior mechanical properties than MSSQ were blended with decomposable polymers as pore generators. While adding up to 40 wt % porogen into MTMS:BTMSE=100:50 matrix, optical, electrical, and mechanical properties were measured and the pore structure was also characterized by PALS. The result confirmed that there existed a tradeoff in attaining the low dielectric constant and desirable mechanical strength, and no more pores than necessary to achieve the dielectric objective should be incorporated. When the dielectric constant was fixed to approximately 2.3 by controlling BTMSE and porogen contents simultaneously, the thermo-mechanical properties of the porous films were also investigated for the comparison purpose. Under the same dielectric constant, the increase in BTMSE and porogen contents led to improvement in modulus measured by the nanoindentation technique but deterioration of adhesion strength obtained by the modified edge lift-off test.


2001 ◽  
Vol 714 ◽  
Author(s):  
Hae-Jeong Lee ◽  
Eric K. Lin ◽  
Howard Wang ◽  
Wen-Li Wu ◽  
Wei Chen ◽  
...  

ABSTRACTA novel methodology using a combination of ion scattering, x-ray reflectivity (SXR), and small angle neutron scattering was used to characterize the structure and properties of a hydrogen silsesquioxane (HSQ) based porous low-k dielectric films after varying process conditions. The dielectric constant and the remaining Si-H fraction (degree of cure) of the samples were varied from 1.5 to 2.2 and from 30 % to 52 %, respectively, by controlling the mass ratio of the solvent and the HSQ resin in the initial solutions and the wet ammonia treatment time. We determined the density depth profile, average mass density, wall density, porosity, average pore size, average wall thickness, pore connectivity and atomic composition. The chemical bond structures were also measured using Fourier transform infrared (FTIR) spectroscopy. The density profile of each porous low-k film was uniform and only two layers were required to fit the experimental SXR data. Higher dielectric constant films show significantly higher wall densities and lower porosities and pore sizes. The measured increases in the wall density with lower Si-H fractions are consistent with the FTIR results.


1996 ◽  
Vol 427 ◽  
Author(s):  
Tom Seidel ◽  
Bin Zhao ◽  
Sematech ◽  
T X Austin

AbstractAnalysis of the National Technology Roadmap for Semiconductors (SIA) indicates a potential crisis in performance and reliability regarding the scaling of interconnects. In the future, increased component density and performance (e.g. logic instructions / sec.) may not be able to be achieved simultaneously for technology generations well before the manufacture of 0.1μm feature sizes circa 2005. Thermal management and engineering of signal noise are key issues. Although much can be done to achieve higher speed with product design architecture, one must consider new material paradigms by 0. 1μm generation to address the RC crisis.Needs exist in low cost simplified processes across a broad area of applications: local salicide interconnects, lower process temperature for poly-metal dielectric (to enable shallower junctions), lower dielectric constant materials for interconnects, and robust barriers for interconnect plugs and wiring metals. A shift to lower dielectric constant (low-k) materials (e.g. SiO-F, polymers, or aerogels) will be used as soon as integrated processes are demonstrated and manufacturing tools become available. The next full generation window of opportunity is the 0.18um generation (1GB) scheduled for manufacturing prototyping in 1998.This paper reviews the overall Roadmap characteristics, major solution strategies, and outlines the challenges in design, technology, and integration for 0.18μm and 0.1μm generations. Topics reviewed include discussion of process architectures and electrical characterization methodologies. Among the most challenging areas we have: control and lowering of contact resistance, manufacturing interconnects at aspect ratios exceeding 4:1, use of very low dielectric constant materials in multilevel counts approaching 6–7, use of controllable ultra thin barrier materials for interconnect plugs and wiring, barriers and cladding for containment and passivation of Cu, development of manufacturing worthy selective processes, engineering stress/electromigration issues and thermal management of low-k dielectric systems. New materials must be introduced into existing technology frameworks while designs migrate to lower voltage operation.


1999 ◽  
Vol 565 ◽  
Author(s):  
Y. Shimogaki ◽  
S. W. Lim ◽  
E. G. Loh ◽  
Y. Nakano ◽  
K. Tada ◽  
...  

AbstractLow dielectric constant F-doped silicon oxide films (SiO:F) can be prepared by adding fluorine source, like as CF4 to the conventional PECVD processes. We could obtain SiO:F films with dielectric constant as low as 2.6 from the reaction mixture of SiH4/N2 O/CF4. The structural changes of the oxides were sensitively detected by Raman spectroscopy. The three-fold ring and network structure of the silicon oxides were selectively decreased by adding fluorine into the film. These structural changes contribute to the decrease ionic polarization of the film, but it was not the major factor for the low dielectric constant. The addition of fluorine was very effective to eliminate the Si-OH in the film and the disappearance of the Si-OH was the key factor to obtain low dielectric constant. A kinetic analysis of the process was also performed to investigate the reaction mechanism. We focused on the effect of gas flow rate, i.e. the residence time of the precursors in the reactor, on growth rate and step coverage of SiO:F films. It revealed that there exists two species to form SiO:F films. One is the reactive species which contributes to increase the growth rate and the other one is the less reactive species which contributes to have uniform step coverage. The same approach was made on the PECVD process to produce low-k C:F films from C2F4, and we found ionic species is the main precursor to form C:F films.


Sign in / Sign up

Export Citation Format

Share Document