Correlations Between Structural Characteristics and Process Conditions of HSQ Based Porous Low-k Thin Films

2001 ◽  
Vol 714 ◽  
Author(s):  
Hae-Jeong Lee ◽  
Eric K. Lin ◽  
Howard Wang ◽  
Wen-Li Wu ◽  
Wei Chen ◽  
...  

ABSTRACTA novel methodology using a combination of ion scattering, x-ray reflectivity (SXR), and small angle neutron scattering was used to characterize the structure and properties of a hydrogen silsesquioxane (HSQ) based porous low-k dielectric films after varying process conditions. The dielectric constant and the remaining Si-H fraction (degree of cure) of the samples were varied from 1.5 to 2.2 and from 30 % to 52 %, respectively, by controlling the mass ratio of the solvent and the HSQ resin in the initial solutions and the wet ammonia treatment time. We determined the density depth profile, average mass density, wall density, porosity, average pore size, average wall thickness, pore connectivity and atomic composition. The chemical bond structures were also measured using Fourier transform infrared (FTIR) spectroscopy. The density profile of each porous low-k film was uniform and only two layers were required to fit the experimental SXR data. Higher dielectric constant films show significantly higher wall densities and lower porosities and pore sizes. The measured increases in the wall density with lower Si-H fractions are consistent with the FTIR results.

2005 ◽  
Vol 863 ◽  
Author(s):  
P.M. Capani ◽  
P.D. Matz ◽  
D.W. Mueller ◽  
M.J. Kim ◽  
E.R. Walter ◽  
...  

AbstractWater adsorption by porous low-k silica films results in increased dielectric constants and is often due to silanol groups on the pore surfaces. Reacting the silanols with silylating agents (e.g., hexamethyldisilazane (HMDS) and trimethylchlorosilane (TMCS)) in supercritical CO2 (SC-CO2) can increase film hydrophobicity and can remove adsorbed water. In porous methylsilsesquioxane (MSQ) films (average pore size ∼ 3-4nm), it has been determined that supercritical silylation reactions do not substantially penetrate beyond the film surface.1,2 In this work we have examined the supercritical penetration behavior of silylating agents in low-k films with larger pore sizes (5-10nm). The depth and extent of reactants was determined by in situ infrared spectroscopy (FTIR), and surface hydrophobicity was examined by contact angle experiments.


1998 ◽  
Vol 544 ◽  
Author(s):  
Melissa Yu ◽  
Hongching Shan ◽  
Ashley Taylor

ABSTRACTThe materials with lower dielectric constant ( low k ) have been attracting attention recently because the low k material has the potential to be used in place of SiO2 in ULSI. In this work, we focused on evaluating organic low k material performance with plasma etch in the Applied Material's eMxP+ anisotropic etch chamber. The films studied were Dow Chemical BCB and Silk, Allied Signal Flare 2.0, and Du Pont FPI. The feature sizes of the wafer s were 0.25 to 1 micron trenches. Du Pont FPI resulted in the highest achieved etch rate of more than lum/min, followed by BCB, and Flare. The microloading study indicated that the etch rate microloading is less than 10% between lum and 0.25 urn feature sizes, which suggests that the chance of etch stop for a high aspect ratio features will be small. The profile could vary from bowing to vertical, to tapering by using different process conditions, mainly by temperature. The FP1 profile was more tapered than those of BCB and Flare when the same process was used to etch the same type of patterned wafer having these three different low k films. The detailed study showed that the trend of etch rate and profile for BCB and Flare film etch were similar, but that the absolute value for profile, as well as the trend of etch rate uniformity and profile were somewhat different. In conclusion, low k materials can be etched in AMAT traditional dielectric chamber (eMxP+) with a good etch rate and profile control.


2003 ◽  
Vol 766 ◽  
Author(s):  
Ronald C. Hedden ◽  
Barry J. Bauer ◽  
Hae-Jeong Lee

AbstractSmall-angle neutron scattering (SANS) contrast variation is used to characterize matrix properties and pore size in nanoporous low-dielectric constant (low-k) thin films. Using a vapor adsorption technique, SANS measurements are used to identify a “contrast match” solvent mixture containing the hydrogen– and deuterium-containing versions of a probe solvent. The contrast match solvent is subsequently used to conduct SANS porosimetry experiments. With information from specular X-ray reflectivity and ion scattering, the technique is useful for estimating the mass density of the matrix (wall) material and the pore size distribution. To illustrate the technique, a porous methylsilsesquioxane (MSQ) spin-on dielectric is characterized.


2012 ◽  
Vol 520 ◽  
pp. 234-241
Author(s):  
Fang Xia Xie ◽  
Xin Lu ◽  
Xin Bo He ◽  
Xuan Hui Qu

Ti-Mo alloy is one of the most prospective metallic biomaterials for implant application because of its low elastic modulus, high corrosion resistance and tissue compatibility. A complex-shaped porous Ti-10Mo alloy from a mixture of elemental metal powders and polymer binders was processed by selective laser sintering forming, followed by thermal debinding and sintering in vacuum. The effects of processing parameters on structural characteristics and mechanical properties were studied. The results indicate that the pore characteristic parameters, matrix microstructure and mechanical properties strongly depend on the sintering temperature. Specimens sintered at 1100 °C exhibit a higher porosity of 52.41%, and possess many three-dimensionally interconnected pores with an average size of 200 μm, and the matrix is dominated by α and β phases, and meanwhile the alloy exhibits a compressive yield strength of 95.59 MPa and an elastic modulus of 4.89 GPa at room temperature. With the rise in sintering temperature, both the porosity and the average pore size of specimens gradually decrease, and the interconnected pores tend to be closed. Specimens sintered at 1400 °C are characterized by a porosity of 26.32% and an average pore size of 60 μm with a compressive yield strength of 440 MPa and an elastic modulus of 35.26 GPa.


1999 ◽  
Vol 565 ◽  
Author(s):  
J. N. Bremmer ◽  
D. Gray ◽  
Y. Liu ◽  
K. Gruszynski ◽  
S. Marcus

AbstractLow dielectric constant hydrogen silsesquioxane films were achieved by rapid thermal cure processing with production viable equipment. A reduced dielectric constant of k = 2.5–2.6 is demonstrated by optimizing rapid thermal cure process conditions to produce low density hydrogen silsesquioxane thin films. This is a significant reduction relative to production proven furnace cure processed hydrogen silsesquioxane with k = 2.9. Concurrent with reduced k performance is a characteristic film expansion which contributes to formation of a low density structure. A mechanism for film expansion and relevance to low k performance is described; and issues relative to integration of rapid thermal processed low k hydrogen silsesquioxane are discussed.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 314
Author(s):  
Chih-Yen Lee ◽  
Chi-Yang Yan ◽  
Yi-Lung Cheng

Plasma damage and metal ion penetration are critical issues for porous low-dielectric-constant (low-k) materials used in the back-end-of-line interconnects. This study proposed a novel process with in-situ repairing plasma-induced damage and capping a barrier for porous low-k materials by Hexamethyldisilazane (HDMS) plasma treatment. For a plasma-damaged porous low-k material, its surface hydrophilic state was transformed to hydrophobic state by HDMS plasma treatment, revealing that damage was repaired. Simultaneously, a dielectric film was capped onto the porous low-k material, and displayed better barrier capability against Cu migration. Additionally, the breakdown reliability of the stacked dielectric was enhanced by the means of HDMS plasma treatment. The optimized HDMS plasma treatment time was found to be 10 s. Therefore, this proposed HDMS plasma treatment processing is a promising technique for highly applicable low-k material used for advanced technology nodes.


1999 ◽  
Vol 565 ◽  
Author(s):  
Ryo Muraguchi ◽  
Miki Egami ◽  
Hiroki Arao ◽  
Atsushi Tounai ◽  
Akira Nakashima ◽  
...  

AbstractWe studied the effect of pore diameter on the film properties of low-density porous material with special interest in the pore diameter range below 5nm. A novel low-density material, Interpenetrated SOG (IPS), was designed to realize such porous character. It is composed of a pyrolic template, which is an organic olygomer, and framework, made from SOG polymer and silica sol, forming an interpenetrated structure. Thermal decomposition of the organic component successfully resulted in films with pore diameter range below 5nm. It is found that the dielectric constant and the pore diameter depended on the density and the film strength was affected by the average pore diameter. Practically, films with the average pore size below 5nm possessed dielectric constants as low as 2.2–2.0 and sufficient strength.


2002 ◽  
Vol 716 ◽  
Author(s):  
Ben Zhong ◽  
Herman Meynen ◽  
Francesca Iocopi ◽  
Ken Weidner ◽  
Stephane Mailhouitre ◽  
...  

AbstractA ULK material based on a siloxane resin has been developed that can be processed using spin-coating and thermal cure to yield porous low-k films. The chemical bonds between the resin and porogen groups prevent the phase separation of the porogen from the resin during curing and lead to extremely small pores. The highly hydrophobic thin films made from this material displayed dielectric constant of 1.8, breakdown voltage of 4 MV/cm, a cohesive strength > 60 MPa, excellent crack resistance, and an average pore size of 2.2 nm by Positron Annihilation Lifetime Spectroscopy (PALS) and 2.5-3.0 nm by Ellipsometric Porosimetry (EP). In this paper, our strategy for designing low-k materials, the material properties and initial integration results for this new material will be discussed.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012198
Author(s):  
A Yu Milinskiy ◽  
S V Baryshnikov ◽  
E V Charnaya ◽  
N I Uskova

Abstract The results of studies of the dielectric constant ε′ and the DTA signal of a new organic ferroelectric (R)-3-quinuclidinol (C7H13NO), embedded in porous glasses with an average pore size of 100 nm, are presented. The phase transition was found to shift to low temperatures by 3 K upon heating and 6 K upon cooling, in comparison with bulk (R)-3-quinuclidinol. A decrease in the phase transition temperature in composites with (R)-3-quinuclidinol nanoparticles is consistent with theoretical models of the influence of size effects on the structural phase transition.


2020 ◽  
Vol 58 (2) ◽  
pp. 103-111
Author(s):  
Kyu-Sik Kim ◽  
Min-Chul Shim ◽  
Man-Ho Park ◽  
Jung-Yeul Yun ◽  
Kee-Ahn Lee

A block Ni-Cr-Al superalloy foam with dimensions of 300 mm (width direction, WD) × 500 mm (rolling direction, RD) × 60 mm (normal direction, ND) was fabricated using powder alloying, multi-sheet stacking, and hot rolling processes. The structural characteristics, microstructure, and mechanical asymmetry of the block Ni-based foam were investigated. Analysis of the structural features showed that the interfaces between the sheets had complex strut interactions, such as contacted (deformed) and intersected struts. The average pore size along the directions was measured to be 2569.6 μm (WD), 2988.1 μm (RD), and 2493.2 μm (ND). The average thickness of the strut was 340.8 μm, and the wall thickness of the strut was 27.7 μm. The elemental distributions in the struts were uniformly controlled, and the block foam consisted of γ (matrix) and γ ' (Ni<sub>3</sub>Al) phases. Tensile properties in the ND direction showed a yield strength of 0.175 MPa, tensile strength of 0.233 MPa, and elongation of 2.54%, while the tensile properties in the RD direction were 1.27 MPa (YS), 3.01 MPa (UTS), 8.92% (El.) respectively. The foam was observed to have a compressive yield strength of 0.795 MPa in the ND direction, and that of 2.18 MPa in the RD direction were obtained. The asymmetry and anisotropy of these mechanical properties could be explained by the difference in pore sizes along the direction, and the structural characteristics of the sheet interface generated by sheet stacking and rolling.


Sign in / Sign up

Export Citation Format

Share Document