Electrical Properties of Nanoscale Tisi2 Islands on Si

1999 ◽  
Vol 583 ◽  
Author(s):  
Jaehwan Oh ◽  
Hoon Ham ◽  
Peter Laloli ◽  
R. J. Nemanich

AbstractNanoscale TiSi2 islands are formed by electon beam deposition of a few monolayers of titanium followed by in situ annealing at high temperatures (800–1000°C). The typical island sizes were ˜10 nm. Electrical characteristics of these islands were probed using UHV-STM. I-V spectroscopies on these islands show single electron tunneling effects such as Coulomb blockade and Coulomb staircase at room temperature.

1992 ◽  
Vol 06 (05) ◽  
pp. 273-280 ◽  
Author(s):  
M.D. REEVE ◽  
O.G. SYMKO ◽  
R. LI

Tunneling studies between a Scanning Tunneling Microscope (STM)-controlled fine NbN tip and a NbN thin film show single electron tunneling characteristics at room temperature. The I-V curves display the Coulomb blockade and the Coulomb staircase caused by single electron charging of a series combination of two tunnel junctions. These room temperature observations indicate that it may be possible to operate single-electron-based devices in non-cryogenic regimes.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 835
Author(s):  
Mahdi Khaje ◽  
Hassan Sedghi ◽  
Hadi Goudarzi ◽  
Mohammad Taghi Ahmadi ◽  
Seyed Saeid Rahimian Koloor ◽  
...  

The fast growth of hydrogen usage as a clean fuel in civil applications such as transportation, space technology, etc. highlights the importance of the reliable detection of its leakage and accumulation under explosion limit by sensors with a low power consumption at times when there is no accumulation of hydrogen in the environment. In this research, a new and efficient mechanism is presented for hydrogen detection—using the Coulomb blockade effect in a well-arranged 2D array of palladium nano-islands—which can operate at room temperature. We demonstrated that under certain conditions of size distribution and the regularity of palladium nano-islands, with selected sizes of 1.7, 3 and 6.1 nm, the blockade threshold will appear in current-voltage (IV) characteristics. In reality, it will be achieved by the inherent uncertainty in the size of the islands in nano-scale fabrication or by controlling the size of nanoparticles from 1.7 to 6.1 nm, considering a regular arrangement of nanoparticles that satisfies single-electron tunneling requirements. Based on the simulation results, the threshold voltage is shifted towards lower ones due to the expansion of Pd nanoparticles exposed to the environment with hydrogen concentrations lower than 2.6%. Also, exploring the features of the presented structure as a gas sensor, provides robustness against the Gaussian variation in nano-islands sizes and temperature variations. Remarkably, the existence of the threshold voltage in the IV curve and adjusting the bias voltage below this threshold leads to a drastic reduction in power consumption. There is also an improvement in the minimum detectable hydrogen concentration as well as the sensor response.


Author(s):  
F. M. Ross ◽  
R. Hull ◽  
D. Bahnck ◽  
J. C. Bean ◽  
L. J. Peticolas ◽  
...  

We describe an investigation of the electrical properties of interfacial dislocations in strained layer heterostructures. We have been measuring both the structural and electrical characteristics of strained layer p-n junction diodes simultaneously in a transmission electron microscope, enabling us to correlate changes in the electrical characteristics of a device with the formation of dislocations.The presence of dislocations within an electronic device is known to degrade the device performance. This degradation is of increasing significance in the design and processing of novel strained layer devices which may require layer thicknesses above the critical thickness (hc), where it is energetically favourable for the layers to relax by the formation of misfit dislocations at the strained interfaces. In order to quantify how device performance is affected when relaxation occurs we have therefore been investigating the electrical properties of dislocations at the p-n junction in Si/GeSi diodes.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5887
Author(s):  
Linlin Shi ◽  
Hong Wang ◽  
Xiaohui Ma ◽  
Yunpeng Wang ◽  
Fei Wang ◽  
...  

The realization of electrically pumped emitters at micro and nanoscale, especially with flexibility or special shapes is still a goal for prospective fundamental research and application. Herein, zinc oxide (ZnO) microwires were produced to investigate the luminescent properties affected by stress. To exploit the initial stress, room temperature in situ elastic bending stress was applied on the microwires by squeezing between the two approaching electrodes. A novel unrecoverable deformation phenomenon was observed by applying a large enough voltage, resulting in the formation of additional defects at bent regions. The electrical characteristics of the microwire changed with the applied bending deformation due to the introduction of defects by stress. When the injection current exceeded certain values, bright emission was observed at bent regions, ZnO microwires showed illumination at the bent region priority to straight region. The bent emission can be attributed to the effect of thermal tunneling electroluminescence appeared primarily at bent regions. The physical mechanism of the observed thermoluminescence phenomena was analyzed using theoretical simulations. The realization of electrically induced deformation and the related bending emissions in single microwires shows the possibility to fabricate special-shaped light sources and offer a method to develop photoelectronic devices.


1998 ◽  
Vol 536 ◽  
Author(s):  
Souri Banedjee ◽  
H. Ono ◽  
S. Nozaki ◽  
H. Morisaki

AbstractRoom temperature current-voltage (I-V) characteristics were studied across the thickness of the Ge nanocrystalline films, prepared by the cluster beam evaporation technique. The films thus prepared are deposited either at room temperature (Ge-RT) or at liquid nitrogen temperature (Ge-LNT). Ge-LNT nanofilm is subjected to oxidation while Ge-RT did not get oxidized. Steps were observed in the I-V characteristics of the thin Ge- LNT samples suggesting the Coulomb Blockade effect.


2005 ◽  
Vol 589 (1-3) ◽  
pp. 129-138 ◽  
Author(s):  
Guohua Yang ◽  
Li Tan ◽  
Yiyun Yang ◽  
Shaowei Chen ◽  
Gang-Yu Liu

Sign in / Sign up

Export Citation Format

Share Document