Hardness and Elastic Modulus Measurements of AIN and TiN Sub-Micron Thin Films Using the Continuous Stiffness Measurement Technique with Fem Analysis

1999 ◽  
Vol 594 ◽  
Author(s):  
T. A. Rawdanowicz ◽  
J. Sankar ◽  
J. Narayan ◽  
V. Godbole

AbstractThe hardnesses and elastic moduli of aluminum nitride (AIN) and titanium nitride (TiN) sub-micron thin films pulsed laser deposited (PLD) on silicon (111) were measured using nanoindentation based on a continuous stiffness measurement (CSM) technique. Thin film thicknesses, based on profile measurements of simultaneously grown step samples, are 210 nm and 180 nm with surface roughnesses of 12 nm and 2 nm for AlN and TiN, respectively. X-ray diffraction showed AlN as a highly textured polycrystalline AlN wurzite structure with a (0001) orientation and TiN as a cubic structure with a (111) orientation. The CSM technique provided hardness and elastic modulus as a function of depth. Finite element modeling (FEM) aided in determining the optimum indenter contact depth at which the thin films behaved as a semi-infinite solid with negligible substrate induced artifacts. Hardnesses of these AlN and TiN thin films were, determined analytically, 25 GPa and 33 GPa, as compared to FEM results of 24 GPa and 30 GPa, respectively. The elastic moduli measured 320 GPa and 370 GPa for these AlN and TiN thin films, respectively.

2007 ◽  
Vol 353-358 ◽  
pp. 2966-2969
Author(s):  
Han Ki Yoon ◽  
Yun Sik Yu

ZnO is an n-type semiconductor having a hexagonal wurzite structure. ZnO exhibits good piezoelectric and optical properties, and might be a good candidate for an electroluminescence device like an UV laser diode. Then, these devices are very small, their films are very thin and they are prepared in the limited size and shape, so they are unsuitable for the extensive mechanical testing. In this present work, ZnO thin films are prepared on the glass, GaAs(100), Si(100) and Si(111) substrates at various temperatures by the pulsed laser deposition (PLD) method. ZnO thin films were evaluated by X-ray diffraction (XRD) and mechanical properties such as hardness and elastic modulus were measured through the nano-indenter.


1999 ◽  
Vol 30 (7) ◽  
pp. 657-665 ◽  
Author(s):  
T.A. Rawdanowicz ◽  
V. Godbole ◽  
J. Narayan ◽  
J. Sankar ◽  
A. Sharma

2010 ◽  
Vol 123-125 ◽  
pp. 375-378 ◽  
Author(s):  
Ram Prakash ◽  
Shalendra Kumar ◽  
Chan Gyu Lee ◽  
S.K. Sharma ◽  
Marcelo Knobel ◽  
...  

Ce1-xFexO2 (x=0, 0.01, 0.03 and 0.0 5) thin films were grown by pulsed laser deposition technique on Si and LaAlO3 (LAO) substrates. These films were deposited in vacuum and 200 mTorr oxygen partial pressure for both the substrates. These films were characterized by x-ray diffraction XRD and Raman spectroscopy measurements. XRD results reveal that these films are single phase. Raman results show F2g mode at ~466 cm-1 and defect peak at 489 cm-1 for film that deposited on LAO substrates, full width at half maximum (FWHM) is increasing with Fe doping for films deposited on both the substrates.


2019 ◽  
Vol 473 ◽  
pp. 298-302 ◽  
Author(s):  
Shatha Kaassamani ◽  
Wassim Kassem ◽  
Malek Tabbal

2008 ◽  
Vol 1139 ◽  
Author(s):  
Klaus Martinschitz ◽  
Rostislav Daniel ◽  
Christian Mitterer ◽  
Keckes Jozef

AbstractA new X-ray diffraction technique to determine elastic moduli of polycrystalline thin films deposited on monocrystalline substrates is demonstrated. The technique is based on the combination of sin2ψ and X-ray diffraction wafer curvature techniques which are used to characterize X-ray elastic strains and macroscopic stress in thin film. The strain measurements must be performed for various hkl reflections. The stresses are determined from the substrate curvature applying the Stoney's equation. The stress and strain values are used to calculate hkl reflection dependent X-ray elastic moduli. The mechanical elastic moduli can be then extrapolated from X-ray elastic moduli considering film macroscopic elastic anisotropy. The derived approach shows for which reflection and corresponding value of the X-ray anisotropic factor Γ the X-ray elastic moduli are equal to their mechanical counterparts in the case of fibre textured cubic polycrystalline aggregates. The approach is independent of the crystal elastic anisotropy and depends on the fibre texture type, the texture sharpness, the amount of randomly oriented crystallites and on the supposed grain interaction model. The new method is demonstrated on a fiber textured Cu thin film deposited on monocrystalline Si(100) substrate. The advantage of the new technique remains in the fact that moduli are determined non-destructively, using a static diffraction experiment and represent volume averaged quantities.


2005 ◽  
Vol 19 (01n03) ◽  
pp. 533-535
Author(s):  
J. H. HAO ◽  
J. GAO

We have developed a process to grow SrTiO 3 ( STO ) thin films showing single (110) orientation directly on Si by means of pulsed laser deposition technique. The growth of STO films directly on Si has been described. The crystallinity of the grown STO films was characterized by X-ray diffraction analysis of θ-2θ scan and rocking curve. Our results may be of interest for better understanding of the growth based on the perovskite oxide thin films on silicon materials.


1996 ◽  
Vol 290-291 ◽  
pp. 376-380 ◽  
Author(s):  
S. Santucci ◽  
L. Lozzi ◽  
M. Passacantando ◽  
P. Picozzi ◽  
R. Alfonsetti ◽  
...  

2010 ◽  
Vol 29-32 ◽  
pp. 1913-1918
Author(s):  
Xia Zhang ◽  
Hong Chen ◽  
Qiu Hui Liao ◽  
Xia Li

High-quality c-axis-oriented Ca3Co4O9+δ thin films have been grown directly on Si (100) wafers with inserting MgO buffer layers by pulsed-laser deposition (PLD). X-ray diffraction and scan electron microscopy show good crystallinity of the Ca3Co4O9+δ films. The resistivity and Seebeck coefficient of the Ca3Co4O9+δ thin films on Si (100) substrates are 9.8 mΩcm and 189 μV/K at the temperature of 500K, respectively, comparable to the single-crystal samples. This advance demonstrates the possibility of integrating the cobaltate-based high thermoelectric materials with the current state-of-the-art silicon technology for thermoelectricity-on-a-chip applications.


2007 ◽  
Vol 561-565 ◽  
pp. 1435-1440 ◽  
Author(s):  
Masahiko Ikeda ◽  
Tsuyoshi Miyazaki ◽  
Satoshi Doi ◽  
Michiharu Ogawa

Phase constitution in the solution-treated and quenched state and the heat treatment behavior were investigated by electrical resistivity, hardness, and elastic modulus measurements, X-ray diffraction, and optical microscopy. Hexagonal martensite and the β phase were identified in the Zr-5mass%Nb alloy. β and ω phases were identified in the Zr-10 and 15mass%Nb alloys, and only the β phase was identified in the Ti-20Nb alloy. Resistivity at RT, Vickers hardness and elastic modulus increased up to 10Nb and then decreased dramatically at 15Nb. Above 15Nb, these values slightly decreased. The elastic moduli for 15Nb and 20Nb were 59.5 and 55.5 GPa, respectively. On isochronal heat treatment, the isothermal ω phase precipitated between 473 and 623 K and then the α phase precipitated in the 10Nb, 15Nb and 20Nb alloys.


2011 ◽  
Vol 1292 ◽  
Author(s):  
Nobuyuki Iwata ◽  
Mark Huijben ◽  
Guus Rijnders ◽  
Hiroshi Yamamoto ◽  
Dave H. A. Blank

ABSTRACTThe CaFeOX(CFO) and LaFeO3(LFO) thin films as well as superlattices were fabricated on SrTiO3(100) substrates by pulsed laser deposition (PLD) method. The tetragonal LFO film grew with layer-by-layer growth mode until approximately 40 layers. In the case of CFO, initial three layers showed layer-by-layer growth, and afterward the growth mode was transferred to two layers-by-two layers (TLTL) growth mode. The RHEED oscillation was observed until the end of the growth, approximately 50nm. Orthorhombic twin CaFeO2.5 (CFO2.5) structure was obtained. However, it is expected that the initial three CFO layers are CaFeO3 (CFO3) with the valence of Fe4+. The CFO and LFO superlattice showed a step-terraces surface, and the superlattice satellite peaks in a 2θ-θ and reciprocal space mapping (RSM) x-ray diffraction (XRD) measurements, indicating that the clear interfaces were fabricated.


Sign in / Sign up

Export Citation Format

Share Document