Dehydration Time Dependence on Piezoelectric and Mechanical Properties of Bovine Cornea

1999 ◽  
Vol 600 ◽  
Author(s):  
A. C. Jayasuriya ◽  
J. I. Scheinbeim ◽  
V. Lubkin ◽  
G. Bennett ◽  
P. Kramer

AbstractThe Young's Modulus (E) and piezoelectric coefficient (d31) have been investigated as a function of dehydration time for bovine cornea at room temperature. The piezoelectric and mechanical responses observed were anisotropic for bovine cornea and d31 decreased, while E increased with dehydration. In addition, water molecules appear to increase the crystallinity (of collagen) in the cornea. With dehydration of the cornea, reduction of crystallinity and changes in hydrogen bonding were observed by Fourier Transform Infra Red (FTIR) and Wide Angle X-ray Diffracion (WAXD) measurements.

An idealized model is proposed for the arrangement of the molecules in liquid water which involves essentially a sixfold co-ordination of water molecules with four short OH...O hydrogen bonds of ~2.9 Å length and two long O...O contacts of ~3.6 Å length. An ice-like structure may contribute to a small extent also. This octahedral model has been based on evidence obtained from X-ray and infra-red absorption measurements. The model has been found to be in agreement with the density of water and the melting entropy of ice. The reliability of the radial distribution curves W(r) of liquid water obtained from recent X-ray diffraction measurements is discussed. Infra-red absorption measurements have been made of liquid HDO in excess D 2 O and H 2 O, respectively. The respective O—H and O—D stretching vibration frequencies of liquid HDO have been determined. The position (at 3400 cm -1 ) and shape of the relatively sharp single O—H stretching absorption band of liquid HDO is closely comparable to the corresponding band in liquid interbonding alcohols. The results of the infra-red studies indicate an OH...O distance of 2.86 Å in liquid water at room temperature.


2014 ◽  
Vol 979 ◽  
pp. 319-322 ◽  
Author(s):  
W. Siriprom ◽  
P. Kuha ◽  
S. Kongsriprapan ◽  
K. Teanchai

The physicochemical of methylcellulose (MC) base edible films were investigated in this work. The characterization of MC used X-Ray Diffraction (XRD), Energy Dispersive X-Ray Fluorescence (EDXRF) and Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy for investigated the crystalline, the composition element, and the intermolecular interaction, respectively. It was found that, the XRD pattern indicated MC has amorphous structure. The chemical composition by XRF reported that Silver (Ag) have been detect and the hydrogen bonding formation between MC investigated with FTIR spectra, which interpreted in terms of the symmetry distortion of hydroxyl stretch. Another that, the mechanical properties tensile strength (TS) elastic modulus (EM) and elongation (E) values were investigated.


Author(s):  
C. Wolpers ◽  
R. Blaschke

Scanning microscopy was used to study the surface of human gallstones and the surface of fractures. The specimens were obtained by operation, washed with water, dried at room temperature and shadowcasted with carbon and aluminum. Most of the specimens belong to patients from a series of X-ray follow-up study, examined during the last twenty years. So it was possible to evaluate approximately the age of these gallstones and to get information on the intensity of growing and solving.Cholesterol, a group of bile pigment substances and different salts of calcium, are the main components of human gallstones. By X-ray diffraction technique, infra-red spectroscopy and by chemical analysis it was demonstrated that all three components can be found in any gallstone. In the presence of water cholesterol crystallizes in pane-like plates of the triclinic crystal system.


Arena Tekstil ◽  
2013 ◽  
Vol 28 (1) ◽  
Author(s):  
Maya Komalasari ◽  
Bambang Sunendar

Partikel nano TiO2 berbasis air dengan pH basa telah berhasil disintesis dengan menggunakan metode sol-gel dan diimobilisasi pada kain kapas dengan menggunakan kitosan sebagai zat pengikat silang. Sintesis dilakukan  dengan prekursor TiCl4 pada konsentrasi 0,3 M, 0,5 M dan 1 M, dan menggunakan templat kanji dengan proses kalsinasi pada suhu 500˚C selama 2 jam. Partikel nano TiO2 diaplikasikan ke kain kapas dengan metoda pad-dry-cure dan menggunakan kitosan sebagai crosslinking agent. Berdasarkan hasil Scanning Electron Microscope (SEM),diketahui bahwa morfologi partikel TiO2 berbentuk spherical dengan ukuran nano (kurang dari 100 nm). Karakterisasi X-Ray Diffraction (XRD) menunjukkan adanya tiga tipe struktur kristal utama, yaitu (100), (101) dan (102) dengan fasa kristal yang terbentuk adalah anatase dan rutile. Pada karakterisasi menggunakan SEM terhadap serbuk dari TiO2 yang telah diaplikasikan ke permukaan kain kapas, terlihat adanya imobilisasi partikel nano TiO2 melalui ikatan hidrogen silang dengan kitosan pada kain kapas. Hasil analisa tersebut kemudian dikonfirmasi dengan FTIR (Fourier Transform Infra Red) yang hasilnya memperlihatkan puncak serapan pada bilangan gelombang 3495 cm-1, 2546 cm-1, dan 511 cm-1,  yang masing-masing diasumsikan sebagai adanya vibrasi gugus fungsi O-H, N-H dan Ti-O-Ti. Hasil SEM menunjukkan pula bahwa kristal nano yang terbentuk diantaranya adalah fasa rutile , yang berdasarkan literatur terbukti dapatberfungsi sebagai anti UV.


Chemistry ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 149-163
Author(s):  
Duncan Micallef ◽  
Liana Vella-Zarb ◽  
Ulrich Baisch

N,N′,N″,N‴-Tetraisopropylpyrophosphoramide 1 is a pyrophosphoramide with documented butyrylcholinesterase inhibition, a property shared with the more widely studied octamethylphosphoramide (Schradan). Unlike Schradan, 1 is a solid at room temperature making it one of a few known pyrophosphoramide solids. The crystal structure of 1 was determined by single-crystal X-ray diffraction and compared with that of other previously described solid pyrophosphoramides. The pyrophosphoramide discussed in this study was synthesised by reacting iso-propyl amine with pyrophosphoryl tetrachloride under anhydrous conditions. A unique supramolecular motif was observed when compared with previously published pyrophosphoramide structures having two different intermolecular hydrogen bonding synthons. Furthermore, the potential of a wider variety of supramolecular structures in which similar pyrophosphoramides can crystallise was recognised. Proton (1H) and Phosphorus 31 (31P) Nuclear Magnetic Resonance (NMR) spectroscopy, infrared (IR) spectroscopy, mass spectrometry (MS) were carried out to complete the analysis of the compound.


2020 ◽  
Vol 7 (21) ◽  
pp. 4197-4221 ◽  
Author(s):  
Francisco Colmenero ◽  
Jakub Plášil ◽  
Jiří Sejkora

The structure, hydrogen bonding, X-ray diffraction pattern and mechanical properties of six important uranyl carbonate minerals, roubaultite, fontanite, sharpite, widenmannite, grimselite and čejkaite, are determined using first principles methods.


2017 ◽  
Vol 866 ◽  
pp. 199-203
Author(s):  
Chidchanok Chainej ◽  
Suparut Narksitipan ◽  
Nittaya Jaitanong

The aims of this research were study the microstructures and mechanical properties for partial replacement of cement with Fly ash (FA) and kaolin waste (KW). Ordinary Portland cement were partially replaced with FA and KW in the range of 25-35% and 10-25% by weight of cement powder. The kaolin waste was ground for 180 minutes before using. The specimen was packing into an iron mold which sample size of 5×5×5 cm3. Then, the specimens were kept at room temperature for 24 hours and were moist cured in the incubation lime water bath at age of 3 days. After that the specimens were dry cured with plastic wrap at age of 3, 7, 14 and 28 days. After that the compounds were examined by x-ray diffraction patterns (XRD) and the microstructures were examined by scanning electron microscopy (SEM). The compressive strength was then investigated.


2015 ◽  
Vol 1105 ◽  
pp. 335-338
Author(s):  
Qiong Wu ◽  
Jing Lu ◽  
Xiao Lin Ji ◽  
Tao Yu Zou ◽  
Zhen Fang Qiao ◽  
...  

Modifying polyoxometalates with organic and/or metal-organic moieties is a widely adopted method for broading the range of properties. In this work a new polyoxometalate constructed from Anderson-type polyoxoanions and L-arginine (Arg =L-arginine) molecules Na [CrMo6(OH)6O18]}(H2Arg)2·8H2O(1) has been synthesized via conventional method and characterized by routine techniques. Single-crystal X-Ray diffraction analysis shows that compound 1 is constructed by chiralL-arginine grafted Anderson-type clusters, sodium cation and water molecules which are further stabilized by hydrogen bonding interactions constitute 3D supramolecular networks. In addition, both antitumor behavior and photocatalytic activities of compound 1 were investigated.


2019 ◽  
Vol 2 (1) ◽  
pp. 50
Author(s):  
Andrie Harmaji ◽  
Claudia Claudia ◽  
Lia Asri ◽  
Bambang Sunendar ◽  
Ahmad Nuruddin

Abstract:. Suralaya power plant produces fly ash about 219.000 ton per year. Fly ash contents of silica and alumina as major components that can be used as precursors for geopolymer, a three dimensional networks aluminosilicate polymers. This research aim is to utilize fly ash for geopolymer made by mixing fly ash, fine aggregate, and alkali activator in a cubic mould and curing was carried out at room temperature for 7 and 28 days. After 28 days of curing the compressive strength of geopolymer reached 41.70 MPa. XRD characterization shows Albite (NaAlSi3O8) formation which has similarity to geopolymer compound. Fourier Transform Infra Red spectra show siloxo and sialate bond. These are typical functional groups that are found in geopolymer materials.Keyword: geopolymer, fly ash, aluminosilicate, alkali activator, albite, siloxo, sialateAbstrak: Pembangkit Listrik Tenaga Uap (PLTU) Suralaya menghasilkan fly ash (abu terbang) sekitar 219.000 ton per tahun. Fly ash memiliki silika dan alumina sebagai komponen utama yang dapat digunakan sebagai prekursor untuk geopolimer, suatu material polimer aluminosilikat tiga dimensi. Penelitian ini bertujuan untuk memanfaatkan fly ash untuk geopolimer yang dibuat dengan mencampur fly ash, agregat halus, dan aktivator alkali dalam cetakan kubik dan pengawetan dilakukan pada suhu kamar selama 7 dan 28 hari. Setelah 28 hari curing kekuatan tekan geopolimer mencapai 41,70 MPa. Karakterisasi XRD menunjukkan pembentukan Albite (NaAlSi3O8) yang memiliki kemiripan dengan senyawa geopolimer. Hasil spektroskopi Fourier Transform Infra Red (FTIR) menunjukkan ikatan siloxo dan sialate yang merupakan gugus fungsional khas yang ditemukan dalam geopolimer.Kata Kunci: geopolimer, abu terbang, aluminosilikat, alkali aktivator, albite, siloxo, sialate


Sign in / Sign up

Export Citation Format

Share Document