Hyperbranched Conductive Polymers Constituted of Triphenylamine

1999 ◽  
Vol 600 ◽  
Author(s):  
S. Tanaka ◽  
K. Takeuchi ◽  
M. Asai ◽  
T. Iso ◽  
M. Ueda

AbstractA hyperbranched conjugated polymer containing triphenylamine was prepared by the Grignard reaction of tris(4-bromophenyl)amine 1, via the coupling of N, N-bis(4-bromophenyl)-N-(4-bromomagnesiophenyl)amine 2 with the catalytic amount of Ni(acac)2. Grignard reagent 2 reacted as an AB2-type monomer to give hyperbranched conjugated polymer 3 in a one-step process. Polymer 3 was also obtained via the Pd-catalyzed coupling of N, N-bis(4-bromophenyl)-4-animobenzeneboronic acid 4. Polymer 3 had an average molecular weight of 4.0–6.3×103 and was found to be soluble in organic solvents such as THF and CHC13. A cast film had an anodic peak at 0.95–1.20 V vs. Ag wire. It was dark blue above the oxidation potential and brown-yellow in the neutral state. When polymer 3 was doped with iodine, its conductivity rose to 0.8–3.0 S/cm

1996 ◽  
Vol 461 ◽  
Author(s):  
Gong Ke-Cheng ◽  
Ma Wen-Shi

ABSTRACTThe highly electroactive thiokol rubber (TR)/ conjugated polymer (eg. polyaniline (PAn) or polypyrrole (PPy)) composite films were prepared by electropolymenzation deposition via one-step process in the electrolytic solutions containing aniline or pyrrole and TR oligomer. The electrocatalysis of PAn or PPy for the electrodepolymerization (reduction)- electropolymenzation (oxidation) reaction of TR in the interface between PAn or PPy and TR is determined by cyclic voltammograms. The differeme between the oxidation potential and the reduction potential is 0.05V and 0.36V or less for TR/PAn and TR/PPy composite films, respectively The chemical bands between the nitrogen atoms of PAn or PPy and the mercaptan groups of TR (oligomer) are formed in the electropolymenzation process that is indicated by XPS. The conductivities of TR/PAn and TR/PPy composite films and the stability of the cells consisting of those films are remarkably improved after electrochemical reduction with addition of a suitable conducting carbon black.


2020 ◽  
Vol 14 (4) ◽  
pp. 474-480
Author(s):  
Mohamed Benachour ◽  
◽  
Aslya El-Kebir ◽  
Amine Harrane ◽  
Rachid Meghabar ◽  
...  

Di-methacrylated PLA-PEG-PLA triblock copolymers of polylactide and polyethylene glycol were synthesized in one-step process by bulk cationic polymerization of lactide in the presence of PEG with different average molecular weights, using Maghnite-H+, an acidic montmorillonite clay, as a solid non-toxic catalyst. The obtained di-methacrylated copolymer was analyzed by 1H NMR and DSC. The effect of Maghnite-H+ proportions and PEG average molecular weight on the copolymerization and methacrylation yields and on average molecular weight of the resulting copolymers was studied.


Author(s):  
Juan Villavicencio ◽  
Ferley Orozco ◽  
Ricardo Benitez ◽  
Jaime Martin ◽  
Giovanni Rojas

Polyesters of xylitol and succinic acid were prepared yielding from 70 to 75% by enzymecatalyzed esterification using a molar mass from 1:1 to 2:5 at 120 and 140 °C employing from 1 to 10% m/m of enzyme. Control over branching degree was achieved by tuning the reaction conditions (temperature, time, comonomer ratio, enzyme content). This one-step process from renewable starting materials avoids protection-deprotection techniques, as well as the use of toxic solvents by introducing limonene as solvent for polyesterification for the first time. All materials were structurally characterized by infrared (IR) and nuclear magnetic resonance (NMR)spectroscopy, their thermal properties were studied by differential scanning calorimetry (DSC)and thermogravimetric analysis (TGA), and the molecular weight of samples were obtained by gel-permeation chromatography (GPC).


2016 ◽  
Vol 34 (4) ◽  
pp. 834-844 ◽  
Author(s):  
J. Suresh ◽  
S. Karthik ◽  
A. Arun

AbstractThe acrylate monomer was synthesized by two step process. 2,4-dichloro-1-ene(4-hydroxyphenyl)phenone (DHP) was synthesized using 4-hydroxy benzaldehyde and 2,4-dichloro acetophenone. 4-[3-(2,4-dichloro-phenyl)3-oxoprop-1-en-1-yl]phenylacrylate (DCP) was prepared by reacting DHP with acryloyl chloride. The synthesized monomer was copolymerized with 2-hydroxyethyl acrylate and styrene using solution polymerization technique. Monomer and polymers were characterized by IR, NMR and UV techniques. The average molecular weight of the polymer was around 4000 g/mol. First and second decomposition temperature of the polymers was around 320 °C and 430 °C, respectively. The reactivity ratio of the polymers was calculated by Fineman-Ross, Kelen-Tudos and extended Kelen-Tudos methods. The synthesized monomer has been less reactive than the commercial monomer. The rate of photocrosslinking increased from 39 % to 99 % due to the using of copolymerization technique.


2006 ◽  
Vol 11-12 ◽  
pp. 643-648
Author(s):  
Qing Hong Liang ◽  
Dong Mei Yue ◽  
Xiao Yu Li

Amphiphilic diblock copolymer was synthesized in one-step or two-step process by using of methoxy polyethylene glycol (MePEG), 1,6-hexanediol and maleic anhydride and characterized by FTIR and GPC. IR spectrum of amphiphilic diblock copolymer confirmed that MePEG had grafted on polyester. Solution polycondensation, melt polycondensation, mode of adding monomers and reaction time were studied on effect of molecular weight and its distribution. The GPC results showed that fairly narrow molecular weight distribution was obtained in solution polycondensation by one-step process. In addition, self-assemble behavior of amphiphilic diblock copolymer was discussed in different solvents by nanoprecipitation technique. The micelle size and aggregation was measured by TEM. It was found that MePEG1900-b-Polyester2162 copolymer self-assembled in acetone solution against water into well core-shell nanoparticles.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Nam Vu Trung ◽  
Mai Ngoc Nguyen ◽  
Anh Nguyen Thi Ngoc ◽  
Ni Pham Thi ◽  
Tung Tran Quang ◽  
...  

Homopolymers and copolymers derived from 2,5-furandicarboxylic acid have been extensively studied for their potential in the development of sustainable plastics. This research definitely spotlighted the synthesis of poly(ethylene-co-butylene 2,5-furandicarboxylate) copolymer via the two-step melting polycondensation with various ethylene glycol/1,4-butanediol molar ratios. The structural characterization of the obtained biobased copolymer was carried out by ATR-FTIR and 1H NMR. The average molecular weight of the obtained copolymer was determined by the intrinsic viscosity measurements. It was found that ethylene glycol was preferentially incorporated into the copolymer structures when the molecular weight of the products was not high enough (>18000). The decomposition of two types of monomer units of the obtained copolymer was proven through the degradation two-step process by TGA measurements.


1989 ◽  
Vol 174 ◽  
Author(s):  
Han Sik Yoon

AbstractA now type of crystal that can be defined as a “gel crystal” was first made with oligomeric poly-p-phenyleneterephthalainide (PPT-A), associating a large amount of dimethylacetamide (DMAc) liquid molecules, in which catalytic amount of heterocyclic tertiary amine, coupled with alkali metal cations or phosphoric triamidos are incorporated. Under mechanical orientation of the growing PPT-A, before gelation of the reaction “mixture, a hark agar-like gel crystal is formed. It shows a strong optical birefrin,- gence with four clear extinction positions under crossed polarizers when the gel was sectioned either along the direction of PPT-A orientation or perpendicular to it. When the gel formed without orientation it exhibitil speckled birefringence due to a large number of tiny spherulitic crystallites. The degree of crystalline order was similar to that of lyotropic, nematic liquid crystals when evaluated from X-ray diffractograins. The same type of gel crystals with extinction positions were observed in animal and vegetable tissues. It is assumed that the gel crystal has a threedimensionally ordered molecular network structure in which oligo-PPT-A's are arranged end-to-end in parallel lines. The lines are connected laterally, to form sheets, by DMAc bridges that are linear associations of DMAc molecules, which are connected to the oligo-PPT–A at the CONH groups. PPT-A molecular growth and self-ordering occurs within this gel crystal. A similar process gives rise to wool, cotton and ol.her fibrous biological materials.The high molecular weight PPT-A fiber thus grown in the gel crystal is constructed with numerous unit fibrils which connect themselves in a three-dimensional network, that resembles native flax or ranie fibers. The molecular growth of PPT-A in the gel crystal reaches ultra high molecular weight that can rarely be attained in ordinary solvent polyinerization. The gel state of PPT-A fibrils are initially formed spontaneously by selfsubdivision of the gel crystal after the molecular growth of PPT-A. Solid fibrils and fibers are finally fortoed by removing DMAc. The PPT-A gel fibrils thus formed resemble closely “the nascent fibril” of cellulose, and the microstructure and morphology of PPT-A fibrils are consequently very similar to those of native cellulose. The thickness of PPT-A fibrils can readily be controlled by the temperature in the gel crystal before fibril formation. The direction of the fibrils depends on the initial orientation of oligo-PPT-A's immediately before the formation of the gel crystal.This growth-packed PPT-A fibril, that can be produced by a one step chemical reaction, is considered as a good candidate for the replacemerit of native asbestos, because of the lower production cost, microfibrillation property, and inherently high heat-resistance.


e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Zhendong Shi ◽  
Xinling Wang

AbstractHigh molecular weight α,ω-bis(3-aminopropyldiethoxylsilane) poly(tri fluoropropylmethyl)siloxanes (APTFPMS) were prepared via a “one-step” process, based on the ring-opening polymerization of 1,3,5-tris(trifluoropropylmethyl) cyclotrisiloxane (F3) in the presence of water and 3-aminopropyltriethoxysilane (APTES). GPC, FT-IR and 1H NMR confirmed the structure of the polymers. It was found that the amount of APTES had significant influence on the reaction rate and the molecular weights of polymers decreased with the increasing amount of water. It was probably because both water and the amino group of APTES favoured generation of hydroxyl ions, which efficiently initiate the polymerization of F3 to achieve APTFPMS. In order to verify this mechanism, another “two-step” process was also performed: Firstly the α,ω-dihydroxylated poly(trifluoropropylmethyl) siloxanes were synthesized from F3 catalyzed by both diaminoethane and water, then reacted with APTES to achieve APTFPMS. All the syntheses had high yields and the molecular weight of the polymers ranged from 2000 to 25000.


Author(s):  
C. E. Cluthe ◽  
G. G. Cocks

Aqueous solutions of a 1 weight-per cent poly (ethylene oxide) (PEO) were degassed under vacuum, transferred to a parallel plate viscometer under a nitrogen gas blanket, and exposed to Co60 gamma radiation. The Co60 source was rated at 4000 curies, and the dose ratewas 3.8x105 rads/hr. The poly (ethylene oxide) employed in the irradiations had an initial viscosity average molecular weight of 2.1 x 106.The solutions were gelled by a free radical reaction with dosages ranging from 5x104 rads to 4.8x106 rads.


Sign in / Sign up

Export Citation Format

Share Document