The Effect of Wafer Shape on Slurry Film Thickness and Friction Coefficients in Chemical Mechanical Planarization

2000 ◽  
Vol 613 ◽  
Author(s):  
Joseph Lu ◽  
Jonathan Coppeta ◽  
Chris Rogers ◽  
Vincent P. Manno ◽  
Livia Racz ◽  
...  

ABSTRACTThe fluid film thickness and drag during chemical-mechanical polishing are largely dependent on the shape of the wafer polished. In this study we use dual emission laser induced fluorescence to measure the film thickness and a strain gage, mounted on the polishing table, to measure the friction force between the wafer and the pad. All measurements are taken during real polishing processes. The trends indicate that with a convex wafer in contact with the polishing pad, the slurry layer increases with increasing platen speed and decreases with increasing downforce. The drag force decreases with increasing platen speed and increases with increasing downforce. These similarities are observed for both in-situ and ex-situ conditioning. However, these trends are significantly different for the case of a concave wafer in contact with the polishing pad. During ex-situ conditioning the trends are similar as with a convex wafer. However, in-situ conditioning decreases the slurry film layer with increasing platen speed, and increases it with increasing downforce in the case of the concave wafer. The drag force increases with increasing platen speed as well as increasing downforce. Since we are continually polishing, the wafer shape does change over the course of each experiment causing a larger error in repeatability than the measurement error itself. Different wafers are used throughout the experiment and the results are consistent with the variance of the wafer shape. Local pressure measurements on the rotating wafer help explain the variances in fluid film thickness and friction during polishing.

2007 ◽  
Vol 991 ◽  
Author(s):  
Caprice Gray ◽  
Chris Rogers ◽  
Vincent P. Manno ◽  
Robert White ◽  
Mansour Moinpour ◽  
...  

ABSTRACTIt is becoming increasingly clear that understanding the small scale polishing mechanisms operating during CMP requires knowledge of the nature of the pad-wafer contact. Dual Emission Laser Induced Fluorescence (DELIF) can be used to study the fluid layer profile between the polishing pad and the wafer during CMP. Interactions between the polishing pad surface and the wafer can then be deduced from the fluid layer profile. Previous investigations of pad-wafer interactions using DELIF include in-situ measurements of average fluid layer thickness and asperity layer compressibility, surface roughness measurements and polishing pad rebound into etched wells. In this paper, DELIF is used to determine pad-wafer contact, the point at the fluid film thickness goes to zero. We present a technique and some preliminary data for instantaneous measurement of in-situ pad-wafer contact using DELIF. The imaging area is 1.30×1.74 mm with a resolution of 2.5 μm/pixel. At this magnification, some regions imaged contain contact, whereas others do not. For the contact regions discussed in this paper, contact percentage varies from 0.07% to 0.27% on a Cabot Microelectronics D100 polishing pad. The asperity contact area increases with applied load, which was varied from 0.28 to 3.1 psi.


Author(s):  
Caprice Gray ◽  
Daniel Apone ◽  
Chris Rogers ◽  
Vincent P. Manno ◽  
Chris Barns ◽  
...  

Modifications to the Dual Emission Laser Induced Fluorescence (DELIF) procedure used to collect images of the slurry layer between the polishing pad and wafer during Chemical Mechanical Planarization (CMP) have provided a means to attain instantaneous, high spatial resolution images of slurry film thickness. Presented here is a technique to determine the calibration factor that correlates image intensity to slurry film thickness. This presentation will discuss how to determine slurry layer shape near wafer features, pad roughness, and pad compressibility.


2007 ◽  
Vol 28 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Chihyung Huang ◽  
Seongeyl Lee ◽  
John P. Sullivan ◽  
Srinivasan Chandrasekar

2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Prashant G. Khakse ◽  
Vikas M. Phalle ◽  
S. S. Mantha

The present paper deals with the performance analysis of a nonrecessed hole-entry hydrostatic/hybrid conical journal bearing with capillary restrictors. Finite element method has been used for solving the modified Reynolds equation governing the flow of lubricant in the clearance space of journal and bearing. The hole-entry hybrid conical journal bearing performance characteristics have been depicted for a wide range of radial load parameter (W¯r  = 0.25–1.5) with uniform distribution of holes at an angle of 30 deg in the circumferential direction. The numerically simulated results have been presented in terms of maximum fluid film pressure, minimum fluid film thickness, lubricant flow rate, direct fluid film stiffness coefficients, direct fluid film damping coefficients, and stability threshold speed. However, the proposed investigation of nonrecess hole-entry hybrid conical journal bearing shows important performance for bearing stiffness and minimum fluid film thickness at variable radial load and at given operating speed.


Author(s):  
Z. Xie ◽  
Q. Zou ◽  
D. Yao

The characteristics of fluid flows confined within microscale space are of theoretical and practical interest [1]. Such flow includes the thin lubrication films, the liquid flow between biological cells, and the flow of polymer melts in a micro-injection molding machines, etc. A pressure-driven radial flow microrheometry (PDRFM) is used to characterize high-shear microscale fluids. The shear-dependent viscosity of the pressure-driven radial flow is modeled to investigate the possible size effect on the fluid viscosity. In the modeling, the surface shear rate and surface shear stress at the edge of the radial flow are expressed in terms of three measurable parameters, i.e. the flow rate, the loading force, and the fluid film thickness. By decreasing the fluid film thickness to microscale level, this model can be used to study the microscale effect of any homogeneous fluids. The analysis has been verified by using CFD simulations as digital testing platforms. Furthermore, the preliminary experimental results of Newtonian and non-Newtonian flows also proved the rheological modeling.


Author(s):  
Matteo Pelosi ◽  
Monika Ivantysynova

In this paper, a fully coupled fluid-structure interaction and thermal numerical model developed by the authors is used to demonstrate the impact of surface elastic deformations on the piston/cylinder fluid film thickness and on the overall axial piston pump rotating kit performance. The piston/cylinder interface is one of the most critical lubricating interfaces of axial piston machines. This interface fulfills simultaneously a bearing and sealing function under oscillating load conditions in a purely hydrodynamic regime. It represents one of the main sources of energy dissipation and it is therefore a key design element, determining axial piston machine efficiency. In the past years, the research group of the authors studied the impact of advanced micro surface design and fluid film thickness micro alteration in the piston/cylinder interface through extensive simulations and experiments. However, the numerical models used did not include the influence of surface elastic deformations, heat transfer and therefore material properties on the piston/cylinder interface behavior. Hence, the aim of this paper is to show the alterations on fluid film thickness and on the consequent coupled physical parameters due to the solid boundaries pressure and thermal surface elastic deformations. A simulation study considering two different material properties for the cylinder bores is performed, where a steel cylinder block and a steel cylinder block with brass bushings are separately studied. Piston/cylinder gap pressure field and coupled gap surface elastic deformations due to pressure and thermal loading are shown for the different materials. The impact of the different materials behavior on lubricating interface performance is discussed.


Sign in / Sign up

Export Citation Format

Share Document