Performance of Polishing Slurries containing Silica Particles grown by Sol-Gel Method

2000 ◽  
Vol 613 ◽  
Author(s):  
Sun Hyuk Bae ◽  
Jae-Hyun So ◽  
Seung-Man Yang ◽  
Do Hyun Kim

ABSTRACTSilica slurry used as abrasives in wafer polishing process is made by dispersing silica particles in an alkali solution. Since commercially available colloidal or fumed silica particles need some modifications to be directly used as abrasive slurry due to their small sizes, irregular shapes or broad size distribution, we have prepared silica abrasives by particle growth of fumed silica or colloidal silica as seeds by sol-gel method. Silica slurries prepared by this step-wise growth from commercial seeds were tested using one-armed polisher for the comparison with commercial slurries and showed the performance comparable to commercial slurries. Microstructures of polishing slurries were investigated using transmission electron microscopy and ARES rheometer. From the result, stability of the slurry was found to be more important than the primary particle sizes for the polishing performance.

2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Alexandre Pancotti ◽  
Dener Pereira Santos ◽  
Dielly Oliveira Morais ◽  
Mauro Vinícius de Barros Souza ◽  
Débora R. Lima ◽  
...  

AbstractIn this study, we report the synthesis and characterization of NiFe2O4 and CoFe2O4 nanoparticles (NPs) which are widely used in the biomedical area. There is still limited knowledge how the properties of these materials are influenced by different chemical routes. In this work, we investigated the effect of heat treatment over cytotoxicity of cobalt and niquel ferrites NPs synthesized by sol-gel method. Then the samples were studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), Fourier Transform Infrared Spectroscopy Analysis (FTIR), and X-ray fluorescence (XRF). The average crystallite sizes of the particles were found to be in the range of 20–35 nm. The hemocompatibility (erythrocytes and leukocytes) was checked. Cytotoxicity results were similar to those of the control test sample, therefore suggesting hemocompatibility of the tested materials.


2013 ◽  
Vol 745-746 ◽  
pp. 673-678 ◽  
Author(s):  
Wei Hui Jiang ◽  
Zhi Fang Xu ◽  
Jian Min Liu ◽  
Qing Xia Zhu ◽  
Quan Zhang

Aluminum titanate (Al2TiO5) powder has been synthesized at low temperature via nonhydrolytic sol-gel method by using aluminum powder as aluminum source, titanium tetrachloride as titanium source, anhydrous ethanol as oxygen donor with different catalysts. The phase transformation of aluminum titanate xerogel powder during heat treatment and the influence of the mixing orders of raw materials, catalyst kinds on the synthesis of aluminum titanate were investigated by means of differential-thermal analysis (DTA-TG), X-ray diffraction (XRD), transmission electron microscope (TEM). The results indicated that aluminum titanate powder was easily synthesized at 750 °C by using AlCl3 as catalyst with a mixing order of adding TiCl4 before AlCl3 into aluminum alcohol mixture. The catalytic order of the different catalysts in the preparation process of aluminum titanate is: FeCl3> AlCl3> MgCl2. The catalyst promoted the activation of metal aluminum powder and played a major role in the synthesis of aluminum titanate powder at low temperature via nonhydrolytic sol-gel method.


Nanopages ◽  
2019 ◽  
pp. 1-11
Author(s):  
G. M. Taha ◽  
M. N. Rashed ◽  
M. S. El-Sadek ◽  
M. A. Moghazy

Abstract BiFeO3 (BFO) nanopowder was synthesized in a pure form via a sol- gel method based on glycol gel reaction. Effect of drying and preheating temperature on preventing other phases was studied. Many parameters were studied as calcination temperature and time & stirring temperature as well. The prepared powder was characterized by X-Ray Diffraction of powder (XRD) and Transmission Electron Microscope (TEM). High pure BiFeO3 was obtained by preheated process at 400 °C for 0.5 h and calcination at 600 °C for 0.5 h without any impurities compared to dry at110 °C.


2018 ◽  
Vol 41 (3-4) ◽  
pp. 53-62 ◽  
Author(s):  
Behnaz Lahijani ◽  
Kambiz Hedayati ◽  
Mojtaba Goodarzi

Abstract In this work, the PbFe12O19 nanoparticles were prepared by the simple and optimized precipitation method with different organic surfactants and capping agents. In the next step, the TiO2 nanoparticles were synthesized using the sol-gel method. At the final step, the PbFe12O19-TiO2 nanocomposites were prepared via the sol-gel method. The effect of the precipitating agent on the morphology and particle size of the products was investigated. The prepared products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. The results obtained by the vibrating sample magnetometer show the magnetic properties of the ferrite nanostructures. The photocatalytic effect of the PbFe12O19-TiO2 nanocomposite on the elimination of the azo dyes (acid black, acid violet and acid blue) under ultraviolet light irradiation was evaluated. The results indicate that the prepared nanocomposites have acceptable magnetic and photocatalytic performance.


2004 ◽  
Vol 03 (06) ◽  
pp. 749-755 ◽  
Author(s):  
YING LI ◽  
SUO HON LIM ◽  
TIM WHITE

The properties influencing the photocatalytic activity of TiO 2 particles have been suggested to include the surface area, crystallinity, crystallite size and crystal structure. Therefore, manipulation of the microstructure of titania, especially of nanocrystalline powders, is very important in the preparative process. In this study, nanocrystalline TiO 2 powders with controlled particle size and phase composition were synthesized at low temperature (<80°C) by a modified sol–gel method. The effects of gelation temperature were systematically investigated. It was found that this parameter played a critical role in determining the crystallinity of single phase anatase. With increasing gelation temperature, the crystallinity of anatase improved initially and then decreased if the temperature was raised to 80°C. These nanomaterials were characterized comprehensively by powder X-ray diffraction (including Rietveld analysis), high-resolution transmission electron microscopy, DSC/TGA thermal analysis and UV–Vis spectrometry.


Silicon ◽  
2020 ◽  
Author(s):  
Xijia Zhao ◽  
Yihan Wang ◽  
Jianhui Luo ◽  
Pingmei Wang ◽  
Peiwen Xiao ◽  
...  

2010 ◽  
Vol 33 ◽  
pp. 251-253
Author(s):  
Peng Zhang ◽  
Gang Chen ◽  
Bin Guo ◽  
Shu Kang Cheng

Porous membrane materials have the universal use, so it is widely considered as one of the most promising high-tech. Different membranes have different preparation methods. In this paper, the sol-gel method was applied to prepare silica particles using ammonia as catalyst of TEOS hydrolysis, then silica particles were mixed with polyethylene, and finally silica particles were dissolved with hydrofluoric acid, leaving holes, the porous materials were obtained. The results show that: (1) In this experimental conditions, the size of silica particles are closely related to the water content of the system. (2) The size of silica particles affects the agglomeration of particles. The size of silica particles are smaller, the agglomeration is more obvious. (3) As the content of PE increases, the porosity of the samples decreases continuously; in theory, when the content of silica is low, the hole will be greater.


2018 ◽  
Vol 322 ◽  
pp. 85-92 ◽  
Author(s):  
Narges Ataollahi ◽  
Elisa Cappelletto ◽  
Keti Vezzù ◽  
Vito Di Noto ◽  
Gianni Cavinato ◽  
...  

2019 ◽  
Vol 94 (1) ◽  
pp. 186-194
Author(s):  
Qiuhua Wang ◽  
Huiying Wang ◽  
Yaling Wu ◽  
Lingping Cheng ◽  
Lunan Zhu ◽  
...  

2002 ◽  
Vol 17 (3) ◽  
pp. 590-596 ◽  
Author(s):  
G. Ennas ◽  
M. F. Casula ◽  
G. Piccaluga ◽  
S. Solinas ◽  
M. P. Morales ◽  
...  

γ–Fe2O3/SiO2 and Fe/SiO2 nanocomposites, with a Fe/Si molar ratio of 0.25, were prepared by the sol-gel method starting from ethanolic solutions of tetraethoxysilane and iron (III) nitrate. After gelation the xerogels were oxidated or reduced. Samples were investigated by transmission electron microscopy, x-ray diffraction, differential scanning calorimetry, and thermogravimetry. Magnetic properties of the samples were investigated at room temperature (RT) and at 77 K. Nanometric particles supported in the silica matrix were obtained in all cases. Bigger particles (10 nm) were obtained in the case of Fe/SiO2 nanocomposites with respect to the γ–Fe2O3/SiO2 samples (5–8 nm). A slight effect of sol dilution on particle size was observed only in the case of γ–Fe2O3/SiO2 nanocomposites. A superparamagnetic behavior was shown at RT only by γ–Fe2O3/SiO2 nanocomposites. Iron-based composites exhibited coercivity values higher than 700 Oe at RT.


Sign in / Sign up

Export Citation Format

Share Document